Loading…

N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects

Currently available antidepressants have a delayed onset and limited efficacy, highlighting the need for new, rapid and more efficacious agents. Ketamine, an NMDA receptor antagonist, has emerged as a new rapid-acting antidepressant, effective even in treatment resistant patients. However, ketamine...

Full description

Saved in:
Bibliographic Details
Published in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2019-12, Vol.44 (13), p.2230-2238
Main Authors: Fogaça, Manoela V, Fukumoto, Kenichi, Franklin, Tina, Liu, Rong-Jian, Duman, Catharine H, Vitolo, Ottavio V, Duman, Ronald S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Currently available antidepressants have a delayed onset and limited efficacy, highlighting the need for new, rapid and more efficacious agents. Ketamine, an NMDA receptor antagonist, has emerged as a new rapid-acting antidepressant, effective even in treatment resistant patients. However, ketamine induces undesired psychotomimetic and dissociative side effects that limit its clinical use. The d-stereoisomer of methadone (dextromethadone; REL-1017) is a noncompetitive NMDA receptor antagonist with an apparently favorable safety and tolerability profile. The current study examined the rapid and sustained antidepressant actions of d-methadone in several behavioral paradigms, as well as on mTORC1 signaling and synaptic changes in the medial prefrontal cortex (mPFC). A single dose of d-methadone promoted rapid and sustained antidepressant responses in the novelty-suppressed feeding test (NSFT), a measure of anxiety, and in the female urine sniffing test (FUST), a measure of motivation and reward. D-methadone also produced a rapid reversal of the sucrose preference deficit, a measure of anhedonia, in rats exposed to chronic unpredictable stress. D-methadone increased phospho-p70S6 kinase, a downstream target of mTORC1 in the mPFC, and intra-mPFC infusion of the selective mTORC1 inhibitor rapamycin blocked the antidepressant actions of d-methadone in the FUST and NSFT. D-methadone administration also increased levels of the synaptic proteins, PSD95, GluA1, and Synapsin 1 and enhanced synaptic function in the mPFC. Studies in primary cortical cultures show that d-methadone also increases BDNF release, as well as phospho-p70S6 kinase. These findings indicate that d-methadone induces rapid antidepressant actions through mTORC1-mediated synaptic plasticity in the mPFC similar to ketamine.
ISSN:0893-133X
1740-634X
DOI:10.1038/s41386-019-0501-x