Loading…

Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice

Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (...

Full description

Saved in:
Bibliographic Details
Published in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2020-01, Vol.45 (2), p.374-383
Main Authors: Pickel, Virginia M, Bourie, Faye, Chan, June, Mackie, Ken, Lane, Diane A, Wang, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3709-3d9aa940ce7b5c68597970448b157efbe9113accba37d51dbd836b3478281f603
cites cdi_FETCH-LOGICAL-c3709-3d9aa940ce7b5c68597970448b157efbe9113accba37d51dbd836b3478281f603
container_end_page 383
container_issue 2
container_start_page 374
container_title Neuropsychopharmacology (New York, N.Y.)
container_volume 45
creator Pickel, Virginia M
Bourie, Faye
Chan, June
Mackie, Ken
Lane, Diane A
Wang, Gang
description Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (CB1Rs) largely mediate the central neural effects of ∆9-THC and endocannabinoids that regulate NMDA receptor-dependent synaptic plasticity of glutamatergic synapses in the prelimbic prefrontal cortex (PL-PFC). Thus, chronic occupancy of CB1Rs by ∆9-THC during adolescence may competitively decrease the functional expression and activity of NMDA receptors in the mature PL-PFC. We used a multidisciplinary approach to test this hypothesis in adult C57BL/6J male mice that received vehicle or ∆9-THC in escalating doses (2.5-10 mg/kg/ip) through adolescence (postnatal day 29-43). In comparison with vehicle, the mice receiving ∆9-THC showed a hyperpolarized resting membrane potential, decreased spontaneous firing rate, increased current-induced firing threshold, and decreased depolarizing response to NMDA in deep-layer PL-PFC neurons analyzed by current-clamp recordings. Electron microscopic immunolabeling in the PL-PFC of adult mice that had received Δ9-THC only during adolescence showed a significant (1) decrease in the extrasynaptic plasmalemmal density of obligatory GluN1-NMDA subunits in dendrites of all sizes and (2) a shift from cytoplasmic to plasmalemmal distribution of GluN1 in large dendrites receiving mainly inhibitory-type synapses from CB1R-labeled terminals. From these results and concomitant behavioral studies, we conclude that social dysfunctions resulting from excessive intake of ∆9-THC in the increasingly available marijuana products used by male teens may largely reflect circuit defects in PL-PFC networks communicating through endocannabinoid-regulated NMDA receptors.
doi_str_mv 10.1038/s41386-019-0466-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6901492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476735875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3709-3d9aa940ce7b5c68597970448b157efbe9113accba37d51dbd836b3478281f603</originalsourceid><addsrcrecordid>eNp9kk2OFCEYhonROG3rAdwYEtel0FD8bEwmrTOajONGk9kR_tpmUgUlUGb6AmaO5Hk8iVR6nOjGDSx4nyfw8QLwHKNXGBHxulBMBOsQlh2ijHXyAVhhTlHHCL16CFZISNJhQq5OwJNSrhHCPWfiMTghmGwIY2gFfm73OcVgoXZp8MX6WKG_mVKZs4c1wV-3P2RXfc16f3A5WR2jNiGmATpvs9fFF3j58e0ptHPOC6yja4KWL4eop9rM06DLqAc_tqVRsYR6gGl3xM6H-RLDMps5hlpgiLDuPZyyH8JoGmxTrv5miWs3DxUuIjgG65-CRzs9FP_sbl-DL2fvPm_fdxefzj9sTy86SziSHXFSa0mR9dz0lolecskRpcK0Wfid8RJjoq01mnDXY2ecIMwQysVG4B1DZA3eHL3TbEbvlgFlPagph1Hng0o6qH9PYtirr-m7YhJhKjdN8PJOkNO32ZeqrtOcY7uz2lDOOOkF7_-ban-FOEctugb4mLI5lZL97v4eGKmlEupYCdUqoZZKKNmYF38_4J740wHyG4bhtqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323077067</pqid></control><display><type>article</type><title>Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice</title><source>Nexis UK</source><source>Springer Link</source><source>PubMed Central</source><creator>Pickel, Virginia M ; Bourie, Faye ; Chan, June ; Mackie, Ken ; Lane, Diane A ; Wang, Gang</creator><creatorcontrib>Pickel, Virginia M ; Bourie, Faye ; Chan, June ; Mackie, Ken ; Lane, Diane A ; Wang, Gang</creatorcontrib><description>Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (CB1Rs) largely mediate the central neural effects of ∆9-THC and endocannabinoids that regulate NMDA receptor-dependent synaptic plasticity of glutamatergic synapses in the prelimbic prefrontal cortex (PL-PFC). Thus, chronic occupancy of CB1Rs by ∆9-THC during adolescence may competitively decrease the functional expression and activity of NMDA receptors in the mature PL-PFC. We used a multidisciplinary approach to test this hypothesis in adult C57BL/6J male mice that received vehicle or ∆9-THC in escalating doses (2.5-10 mg/kg/ip) through adolescence (postnatal day 29-43). In comparison with vehicle, the mice receiving ∆9-THC showed a hyperpolarized resting membrane potential, decreased spontaneous firing rate, increased current-induced firing threshold, and decreased depolarizing response to NMDA in deep-layer PL-PFC neurons analyzed by current-clamp recordings. Electron microscopic immunolabeling in the PL-PFC of adult mice that had received Δ9-THC only during adolescence showed a significant (1) decrease in the extrasynaptic plasmalemmal density of obligatory GluN1-NMDA subunits in dendrites of all sizes and (2) a shift from cytoplasmic to plasmalemmal distribution of GluN1 in large dendrites receiving mainly inhibitory-type synapses from CB1R-labeled terminals. From these results and concomitant behavioral studies, we conclude that social dysfunctions resulting from excessive intake of ∆9-THC in the increasingly available marijuana products used by male teens may largely reflect circuit defects in PL-PFC networks communicating through endocannabinoid-regulated NMDA receptors.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/s41386-019-0466-9</identifier><identifier>PMID: 31323660</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Adolescents ; Age Factors ; Animals ; Behavioral plasticity ; Cannabinoid receptors ; Cannabinoids ; Cannabis ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; Child development ; Chronic exposure ; Dendrites ; Depolarization ; Dose-Response Relationship, Drug ; Dronabinol - toxicity ; Firing rate ; Glutamatergic transmission ; Glutamic acid receptors (ionotropic) ; Male ; Membrane potential ; Mice ; Mice, Inbred C57BL ; N-Methyl-D-aspartic acid receptors ; Nerve Tissue Proteins - antagonists &amp; inhibitors ; Nerve Tissue Proteins - metabolism ; Neuroplasticity ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Prefrontal Cortex - ultrastructure ; Protein Subunits - metabolism ; Psychotropic Drugs - administration &amp; dosage ; Psychotropic Drugs - toxicity ; Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses ; Synapses - drug effects ; Synapses - metabolism ; Synapses - ultrastructure ; Synaptic plasticity ; Teenagers ; Tetrahydrocannabinol ; THC</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2020-01, Vol.45 (2), p.374-383</ispartof><rights>Copyright Nature Publishing Group Jan 2020</rights><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2019.</rights><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3709-3d9aa940ce7b5c68597970448b157efbe9113accba37d51dbd836b3478281f603</citedby><cites>FETCH-LOGICAL-c3709-3d9aa940ce7b5c68597970448b157efbe9113accba37d51dbd836b3478281f603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901492/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901492/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27898,27899,53763,53765</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31323660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pickel, Virginia M</creatorcontrib><creatorcontrib>Bourie, Faye</creatorcontrib><creatorcontrib>Chan, June</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Lane, Diane A</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (CB1Rs) largely mediate the central neural effects of ∆9-THC and endocannabinoids that regulate NMDA receptor-dependent synaptic plasticity of glutamatergic synapses in the prelimbic prefrontal cortex (PL-PFC). Thus, chronic occupancy of CB1Rs by ∆9-THC during adolescence may competitively decrease the functional expression and activity of NMDA receptors in the mature PL-PFC. We used a multidisciplinary approach to test this hypothesis in adult C57BL/6J male mice that received vehicle or ∆9-THC in escalating doses (2.5-10 mg/kg/ip) through adolescence (postnatal day 29-43). In comparison with vehicle, the mice receiving ∆9-THC showed a hyperpolarized resting membrane potential, decreased spontaneous firing rate, increased current-induced firing threshold, and decreased depolarizing response to NMDA in deep-layer PL-PFC neurons analyzed by current-clamp recordings. Electron microscopic immunolabeling in the PL-PFC of adult mice that had received Δ9-THC only during adolescence showed a significant (1) decrease in the extrasynaptic plasmalemmal density of obligatory GluN1-NMDA subunits in dendrites of all sizes and (2) a shift from cytoplasmic to plasmalemmal distribution of GluN1 in large dendrites receiving mainly inhibitory-type synapses from CB1R-labeled terminals. From these results and concomitant behavioral studies, we conclude that social dysfunctions resulting from excessive intake of ∆9-THC in the increasingly available marijuana products used by male teens may largely reflect circuit defects in PL-PFC networks communicating through endocannabinoid-regulated NMDA receptors.</description><subject>Adolescents</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Behavioral plasticity</subject><subject>Cannabinoid receptors</subject><subject>Cannabinoids</subject><subject>Cannabis</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>Child development</subject><subject>Chronic exposure</subject><subject>Dendrites</subject><subject>Depolarization</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dronabinol - toxicity</subject><subject>Firing rate</subject><subject>Glutamatergic transmission</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Male</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Nerve Tissue Proteins - antagonists &amp; inhibitors</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuroplasticity</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Prefrontal Cortex - ultrastructure</subject><subject>Protein Subunits - metabolism</subject><subject>Psychotropic Drugs - administration &amp; dosage</subject><subject>Psychotropic Drugs - toxicity</subject><subject>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Synaptic plasticity</subject><subject>Teenagers</subject><subject>Tetrahydrocannabinol</subject><subject>THC</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk2OFCEYhonROG3rAdwYEtel0FD8bEwmrTOajONGk9kR_tpmUgUlUGb6AmaO5Hk8iVR6nOjGDSx4nyfw8QLwHKNXGBHxulBMBOsQlh2ijHXyAVhhTlHHCL16CFZISNJhQq5OwJNSrhHCPWfiMTghmGwIY2gFfm73OcVgoXZp8MX6WKG_mVKZs4c1wV-3P2RXfc16f3A5WR2jNiGmATpvs9fFF3j58e0ptHPOC6yja4KWL4eop9rM06DLqAc_tqVRsYR6gGl3xM6H-RLDMps5hlpgiLDuPZyyH8JoGmxTrv5miWs3DxUuIjgG65-CRzs9FP_sbl-DL2fvPm_fdxefzj9sTy86SziSHXFSa0mR9dz0lolecskRpcK0Wfid8RJjoq01mnDXY2ecIMwQysVG4B1DZA3eHL3TbEbvlgFlPagph1Hng0o6qH9PYtirr-m7YhJhKjdN8PJOkNO32ZeqrtOcY7uz2lDOOOkF7_-ban-FOEctugb4mLI5lZL97v4eGKmlEupYCdUqoZZKKNmYF38_4J740wHyG4bhtqI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Pickel, Virginia M</creator><creator>Bourie, Faye</creator><creator>Chan, June</creator><creator>Mackie, Ken</creator><creator>Lane, Diane A</creator><creator>Wang, Gang</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice</title><author>Pickel, Virginia M ; Bourie, Faye ; Chan, June ; Mackie, Ken ; Lane, Diane A ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3709-3d9aa940ce7b5c68597970448b157efbe9113accba37d51dbd836b3478281f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescents</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Behavioral plasticity</topic><topic>Cannabinoid receptors</topic><topic>Cannabinoids</topic><topic>Cannabis</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>Child development</topic><topic>Chronic exposure</topic><topic>Dendrites</topic><topic>Depolarization</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dronabinol - toxicity</topic><topic>Firing rate</topic><topic>Glutamatergic transmission</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Male</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Nerve Tissue Proteins - antagonists &amp; inhibitors</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuroplasticity</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Prefrontal Cortex - ultrastructure</topic><topic>Protein Subunits - metabolism</topic><topic>Psychotropic Drugs - administration &amp; dosage</topic><topic>Psychotropic Drugs - toxicity</topic><topic>Receptors, N-Methyl-D-Aspartate - antagonists &amp; inhibitors</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Synaptic plasticity</topic><topic>Teenagers</topic><topic>Tetrahydrocannabinol</topic><topic>THC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pickel, Virginia M</creatorcontrib><creatorcontrib>Bourie, Faye</creatorcontrib><creatorcontrib>Chan, June</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Lane, Diane A</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pickel, Virginia M</au><au>Bourie, Faye</au><au>Chan, June</au><au>Mackie, Ken</au><au>Lane, Diane A</au><au>Wang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>45</volume><issue>2</issue><spage>374</spage><epage>383</epage><pages>374-383</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><abstract>Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (CB1Rs) largely mediate the central neural effects of ∆9-THC and endocannabinoids that regulate NMDA receptor-dependent synaptic plasticity of glutamatergic synapses in the prelimbic prefrontal cortex (PL-PFC). Thus, chronic occupancy of CB1Rs by ∆9-THC during adolescence may competitively decrease the functional expression and activity of NMDA receptors in the mature PL-PFC. We used a multidisciplinary approach to test this hypothesis in adult C57BL/6J male mice that received vehicle or ∆9-THC in escalating doses (2.5-10 mg/kg/ip) through adolescence (postnatal day 29-43). In comparison with vehicle, the mice receiving ∆9-THC showed a hyperpolarized resting membrane potential, decreased spontaneous firing rate, increased current-induced firing threshold, and decreased depolarizing response to NMDA in deep-layer PL-PFC neurons analyzed by current-clamp recordings. Electron microscopic immunolabeling in the PL-PFC of adult mice that had received Δ9-THC only during adolescence showed a significant (1) decrease in the extrasynaptic plasmalemmal density of obligatory GluN1-NMDA subunits in dendrites of all sizes and (2) a shift from cytoplasmic to plasmalemmal distribution of GluN1 in large dendrites receiving mainly inhibitory-type synapses from CB1R-labeled terminals. From these results and concomitant behavioral studies, we conclude that social dysfunctions resulting from excessive intake of ∆9-THC in the increasingly available marijuana products used by male teens may largely reflect circuit defects in PL-PFC networks communicating through endocannabinoid-regulated NMDA receptors.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>31323660</pmid><doi>10.1038/s41386-019-0466-9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology (New York, N.Y.), 2020-01, Vol.45 (2), p.374-383
issn 0893-133X
1740-634X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6901492
source Nexis UK; Springer Link; PubMed Central
subjects Adolescents
Age Factors
Animals
Behavioral plasticity
Cannabinoid receptors
Cannabinoids
Cannabis
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell Membrane - ultrastructure
Child development
Chronic exposure
Dendrites
Depolarization
Dose-Response Relationship, Drug
Dronabinol - toxicity
Firing rate
Glutamatergic transmission
Glutamic acid receptors (ionotropic)
Male
Membrane potential
Mice
Mice, Inbred C57BL
N-Methyl-D-aspartic acid receptors
Nerve Tissue Proteins - antagonists & inhibitors
Nerve Tissue Proteins - metabolism
Neuroplasticity
Prefrontal cortex
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
Prefrontal Cortex - ultrastructure
Protein Subunits - metabolism
Psychotropic Drugs - administration & dosage
Psychotropic Drugs - toxicity
Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors
Receptors, N-Methyl-D-Aspartate - metabolism
Synapses
Synapses - drug effects
Synapses - metabolism
Synapses - ultrastructure
Synaptic plasticity
Teenagers
Tetrahydrocannabinol
THC
title Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20adolescent%20exposure%20to%20%E2%88%869-tetrahydrocannabinol%20decreases%20NMDA%20current%20and%20extrasynaptic%20plasmalemmal%20density%20of%20NMDA%20GluN1%20subunits%20in%20the%20prelimbic%20cortex%20of%20adult%20male%20mice&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Pickel,%20Virginia%20M&rft.date=2020-01-01&rft.volume=45&rft.issue=2&rft.spage=374&rft.epage=383&rft.pages=374-383&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-019-0466-9&rft_dat=%3Cproquest_pubme%3E2476735875%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3709-3d9aa940ce7b5c68597970448b157efbe9113accba37d51dbd836b3478281f603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2323077067&rft_id=info:pmid/31323660&rfr_iscdi=true