Loading…

Implementation of pre-clinical methodologies to study fibrosis and test anti-fibrotic therapy

Diseases where fibrosis plays a major role accounts for enormous morbidity and mortality and yet we have very little in our therapeutic arsenal despite decades of research and clinical trials. Our understanding of fibrosis biology is primarily built on data generated in conventional mono-culture or...

Full description

Saved in:
Bibliographic Details
Published in:Current opinion in pharmacology 2019-12, Vol.49, p.95-101
Main Authors: Oakley, Fiona, Gee, Lucy M, Sheerin, Neil S, Borthwick, Lee A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diseases where fibrosis plays a major role accounts for enormous morbidity and mortality and yet we have very little in our therapeutic arsenal despite decades of research and clinical trials. Our understanding of fibrosis biology is primarily built on data generated in conventional mono-culture or co-culture systems and in vivo model systems. While these approaches have undoubtedly enhanced our understanding of basic mechanisms, they have repeatedly failed to translate to clinical benefit. Recently, there had been a push to generate more physiologically relevant platforms to study fibrosis and identify new therapeutic targets. Here we review the state-of-the-art regarding the development and application of 3D complex cultures, bio-printing and precision cut slices to study pulmonary, hepatic and renal fibrosis.
ISSN:1471-4892
1471-4973
DOI:10.1016/j.coph.2019.10.004