Loading…

Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study

The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-12, Vol.9 (1), p.18779-13, Article 18779
Main Authors: Lourenço, Célia, Kelly, Darren, Cantillon, Jack, Cauchi, Michael, Yon, Marianne A., Bentley, Liz, Cox, Roger D., Turner, Claire
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73
cites cdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73
container_end_page 13
container_issue 1
container_start_page 18779
container_title Scientific reports
container_volume 9
creator Lourenço, Célia
Kelly, Darren
Cantillon, Jack
Cauchi, Michael
Yon, Marianne A.
Bentley, Liz
Cox, Roger D.
Turner, Claire
description The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single Afmid knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups Afmid and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone. Afmid mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.
doi_str_mv 10.1038/s41598-019-55339-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6906526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324903366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</originalsourceid><addsrcrecordid>eNp9UbtuFDEUtRCIRCE_QIEs0dAM-DkzbpCiFS8piAZqy-O5s3HksRfbs9J2tHwCv8eX4MmGEChwYV9dn3Pu4yD0lJKXlPD-VRZUqr4hVDVScq4a9QCdMiJkwzhjD-_FJ-g852tSj2RKUPUYnXDas4527BR9_xiDKzG5sMXlsAPM8OjMAAUynlKc8T56U5wHPBmwxuMZihmijzNgF_BmyVeV-vPbj4zzIYxpzZsw4lyzlXQxzW7Ec1wy1HsEn_HeGWywj2HryjK6UDVzDQ5P0KPJ-Aznt-8Z-vL2zefN--by07sPm4vLxopOlEZwEABkBCm7fhBUKDLYiVnOem4mMIZNbaukqQOyvgUqQRFrlBxYJym3HT9Dr4-6u2WYYbQQSjJe75KbTTroaJz--ye4K72Ne90q0krWVoEXtwIpfl0gFz27bMF7E6AOquvO66JVT9Zaz_-BXscl1ZFvULV1zttVkB1RNsWcE0x3zVCiV7P10WxdzdY3ZmtVSc_uj3FH-W1tBfAjIO9WdyH9qf0f2V8J87hu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324903366</pqid></control><display><type>article</type><title>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lourenço, Célia ; Kelly, Darren ; Cantillon, Jack ; Cauchi, Michael ; Yon, Marianne A. ; Bentley, Liz ; Cox, Roger D. ; Turner, Claire</creator><creatorcontrib>Lourenço, Célia ; Kelly, Darren ; Cantillon, Jack ; Cauchi, Michael ; Yon, Marianne A. ; Bentley, Liz ; Cox, Roger D. ; Turner, Claire</creatorcontrib><description>The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single Afmid knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups Afmid and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone. Afmid mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-55339-9</identifier><identifier>PMID: 31827172</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/320 ; 64/60 ; 692/53/2422 ; 692/699/2743/137/773 ; Acetic acid ; Adrenocorticotropic hormone ; Animal models ; Animals ; Arylformamidase - genetics ; Arylformamidase - metabolism ; Blood glucose ; Blood Glucose - metabolism ; Cushing syndrome ; Cushing Syndrome - diagnosis ; Cushing Syndrome - metabolism ; Data analysis ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Experimental - diagnosis ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Type 2 - diagnosis ; Diabetes Mellitus, Type 2 - metabolism ; Ethanol ; Feces ; Female ; Gas chromatography ; Gas Chromatography-Mass Spectrometry ; Gastrointestinal Microbiome ; Humanities and Social Sciences ; Insulin - blood ; Intestinal microflora ; Longitudinal Studies ; Male ; Mass spectrometry ; Metabolome ; Mice ; Mice, Knockout ; Monitoring, Physiologic ; multidisciplinary ; Multivariate Analysis ; Nervous system diseases ; Obesity - metabolism ; Organic compounds ; Pituitary ; Rodents ; Science ; Science (multidisciplinary) ; Scientific imaging ; VOCs ; Volatile organic compounds ; Volatile Organic Compounds - metabolism</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.18779-13, Article 18779</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</citedby><cites>FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</cites><orcidid>0000-0001-7170-5014 ; 0000-0002-2323-3304 ; 0000-0003-3613-5452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2324903366/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2324903366?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31827172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lourenço, Célia</creatorcontrib><creatorcontrib>Kelly, Darren</creatorcontrib><creatorcontrib>Cantillon, Jack</creatorcontrib><creatorcontrib>Cauchi, Michael</creatorcontrib><creatorcontrib>Yon, Marianne A.</creatorcontrib><creatorcontrib>Bentley, Liz</creatorcontrib><creatorcontrib>Cox, Roger D.</creatorcontrib><creatorcontrib>Turner, Claire</creatorcontrib><title>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single Afmid knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups Afmid and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone. Afmid mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.</description><subject>631/1647/320</subject><subject>64/60</subject><subject>692/53/2422</subject><subject>692/699/2743/137/773</subject><subject>Acetic acid</subject><subject>Adrenocorticotropic hormone</subject><subject>Animal models</subject><subject>Animals</subject><subject>Arylformamidase - genetics</subject><subject>Arylformamidase - metabolism</subject><subject>Blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>Cushing syndrome</subject><subject>Cushing Syndrome - diagnosis</subject><subject>Cushing Syndrome - metabolism</subject><subject>Data analysis</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - diagnosis</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Ethanol</subject><subject>Feces</subject><subject>Female</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gastrointestinal Microbiome</subject><subject>Humanities and Social Sciences</subject><subject>Insulin - blood</subject><subject>Intestinal microflora</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Metabolome</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Monitoring, Physiologic</subject><subject>multidisciplinary</subject><subject>Multivariate Analysis</subject><subject>Nervous system diseases</subject><subject>Obesity - metabolism</subject><subject>Organic compounds</subject><subject>Pituitary</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UbtuFDEUtRCIRCE_QIEs0dAM-DkzbpCiFS8piAZqy-O5s3HksRfbs9J2tHwCv8eX4MmGEChwYV9dn3Pu4yD0lJKXlPD-VRZUqr4hVDVScq4a9QCdMiJkwzhjD-_FJ-g852tSj2RKUPUYnXDas4527BR9_xiDKzG5sMXlsAPM8OjMAAUynlKc8T56U5wHPBmwxuMZihmijzNgF_BmyVeV-vPbj4zzIYxpzZsw4lyzlXQxzW7Ec1wy1HsEn_HeGWywj2HryjK6UDVzDQ5P0KPJ-Aznt-8Z-vL2zefN--by07sPm4vLxopOlEZwEABkBCm7fhBUKDLYiVnOem4mMIZNbaukqQOyvgUqQRFrlBxYJym3HT9Dr4-6u2WYYbQQSjJe75KbTTroaJz--ye4K72Ne90q0krWVoEXtwIpfl0gFz27bMF7E6AOquvO66JVT9Zaz_-BXscl1ZFvULV1zttVkB1RNsWcE0x3zVCiV7P10WxdzdY3ZmtVSc_uj3FH-W1tBfAjIO9WdyH9qf0f2V8J87hu</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Lourenço, Célia</creator><creator>Kelly, Darren</creator><creator>Cantillon, Jack</creator><creator>Cauchi, Michael</creator><creator>Yon, Marianne A.</creator><creator>Bentley, Liz</creator><creator>Cox, Roger D.</creator><creator>Turner, Claire</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7170-5014</orcidid><orcidid>https://orcid.org/0000-0002-2323-3304</orcidid><orcidid>https://orcid.org/0000-0003-3613-5452</orcidid></search><sort><creationdate>20191211</creationdate><title>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</title><author>Lourenço, Célia ; Kelly, Darren ; Cantillon, Jack ; Cauchi, Michael ; Yon, Marianne A. ; Bentley, Liz ; Cox, Roger D. ; Turner, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/1647/320</topic><topic>64/60</topic><topic>692/53/2422</topic><topic>692/699/2743/137/773</topic><topic>Acetic acid</topic><topic>Adrenocorticotropic hormone</topic><topic>Animal models</topic><topic>Animals</topic><topic>Arylformamidase - genetics</topic><topic>Arylformamidase - metabolism</topic><topic>Blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>Cushing syndrome</topic><topic>Cushing Syndrome - diagnosis</topic><topic>Cushing Syndrome - metabolism</topic><topic>Data analysis</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - diagnosis</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Ethanol</topic><topic>Feces</topic><topic>Female</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gastrointestinal Microbiome</topic><topic>Humanities and Social Sciences</topic><topic>Insulin - blood</topic><topic>Intestinal microflora</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Metabolome</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Monitoring, Physiologic</topic><topic>multidisciplinary</topic><topic>Multivariate Analysis</topic><topic>Nervous system diseases</topic><topic>Obesity - metabolism</topic><topic>Organic compounds</topic><topic>Pituitary</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourenço, Célia</creatorcontrib><creatorcontrib>Kelly, Darren</creatorcontrib><creatorcontrib>Cantillon, Jack</creatorcontrib><creatorcontrib>Cauchi, Michael</creatorcontrib><creatorcontrib>Yon, Marianne A.</creatorcontrib><creatorcontrib>Bentley, Liz</creatorcontrib><creatorcontrib>Cox, Roger D.</creatorcontrib><creatorcontrib>Turner, Claire</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourenço, Célia</au><au>Kelly, Darren</au><au>Cantillon, Jack</au><au>Cauchi, Michael</au><au>Yon, Marianne A.</au><au>Bentley, Liz</au><au>Cox, Roger D.</au><au>Turner, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-11</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>18779</spage><epage>13</epage><pages>18779-13</pages><artnum>18779</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single Afmid knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups Afmid and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone. Afmid mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31827172</pmid><doi>10.1038/s41598-019-55339-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7170-5014</orcidid><orcidid>https://orcid.org/0000-0002-2323-3304</orcidid><orcidid>https://orcid.org/0000-0003-3613-5452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.18779-13, Article 18779
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6906526
source PMC (PubMed Central); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647/320
64/60
692/53/2422
692/699/2743/137/773
Acetic acid
Adrenocorticotropic hormone
Animal models
Animals
Arylformamidase - genetics
Arylformamidase - metabolism
Blood glucose
Blood Glucose - metabolism
Cushing syndrome
Cushing Syndrome - diagnosis
Cushing Syndrome - metabolism
Data analysis
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Experimental - diagnosis
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - metabolism
Ethanol
Feces
Female
Gas chromatography
Gas Chromatography-Mass Spectrometry
Gastrointestinal Microbiome
Humanities and Social Sciences
Insulin - blood
Intestinal microflora
Longitudinal Studies
Male
Mass spectrometry
Metabolome
Mice
Mice, Knockout
Monitoring, Physiologic
multidisciplinary
Multivariate Analysis
Nervous system diseases
Obesity - metabolism
Organic compounds
Pituitary
Rodents
Science
Science (multidisciplinary)
Scientific imaging
VOCs
Volatile organic compounds
Volatile Organic Compounds - metabolism
title Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20type%202%20diabetes%20from%20volatile%20faecal%20metabolome%20in%20Cushing%E2%80%99s%20syndrome%20and%20single%20Afmid%20mouse%20models%20via%20a%20longitudinal%20study&rft.jtitle=Scientific%20reports&rft.au=Louren%C3%A7o,%20C%C3%A9lia&rft.date=2019-12-11&rft.volume=9&rft.issue=1&rft.spage=18779&rft.epage=13&rft.pages=18779-13&rft.artnum=18779&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-55339-9&rft_dat=%3Cproquest_pubme%3E2324903366%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2324903366&rft_id=info:pmid/31827172&rfr_iscdi=true