Loading…
Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study
The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission...
Saved in:
Published in: | Scientific reports 2019-12, Vol.9 (1), p.18779-13, Article 18779 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 18779 |
container_title | Scientific reports |
container_volume | 9 |
creator | Lourenço, Célia Kelly, Darren Cantillon, Jack Cauchi, Michael Yon, Marianne A. Bentley, Liz Cox, Roger D. Turner, Claire |
description | The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single
Afmid
knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups
Afmid
and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone.
Afmid
mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice. |
doi_str_mv | 10.1038/s41598-019-55339-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6906526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324903366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</originalsourceid><addsrcrecordid>eNp9UbtuFDEUtRCIRCE_QIEs0dAM-DkzbpCiFS8piAZqy-O5s3HksRfbs9J2tHwCv8eX4MmGEChwYV9dn3Pu4yD0lJKXlPD-VRZUqr4hVDVScq4a9QCdMiJkwzhjD-_FJ-g852tSj2RKUPUYnXDas4527BR9_xiDKzG5sMXlsAPM8OjMAAUynlKc8T56U5wHPBmwxuMZihmijzNgF_BmyVeV-vPbj4zzIYxpzZsw4lyzlXQxzW7Ec1wy1HsEn_HeGWywj2HryjK6UDVzDQ5P0KPJ-Aznt-8Z-vL2zefN--by07sPm4vLxopOlEZwEABkBCm7fhBUKDLYiVnOem4mMIZNbaukqQOyvgUqQRFrlBxYJym3HT9Dr4-6u2WYYbQQSjJe75KbTTroaJz--ye4K72Ne90q0krWVoEXtwIpfl0gFz27bMF7E6AOquvO66JVT9Zaz_-BXscl1ZFvULV1zttVkB1RNsWcE0x3zVCiV7P10WxdzdY3ZmtVSc_uj3FH-W1tBfAjIO9WdyH9qf0f2V8J87hu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324903366</pqid></control><display><type>article</type><title>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lourenço, Célia ; Kelly, Darren ; Cantillon, Jack ; Cauchi, Michael ; Yon, Marianne A. ; Bentley, Liz ; Cox, Roger D. ; Turner, Claire</creator><creatorcontrib>Lourenço, Célia ; Kelly, Darren ; Cantillon, Jack ; Cauchi, Michael ; Yon, Marianne A. ; Bentley, Liz ; Cox, Roger D. ; Turner, Claire</creatorcontrib><description>The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single
Afmid
knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups
Afmid
and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone.
Afmid
mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-55339-9</identifier><identifier>PMID: 31827172</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/320 ; 64/60 ; 692/53/2422 ; 692/699/2743/137/773 ; Acetic acid ; Adrenocorticotropic hormone ; Animal models ; Animals ; Arylformamidase - genetics ; Arylformamidase - metabolism ; Blood glucose ; Blood Glucose - metabolism ; Cushing syndrome ; Cushing Syndrome - diagnosis ; Cushing Syndrome - metabolism ; Data analysis ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Experimental - diagnosis ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Type 2 - diagnosis ; Diabetes Mellitus, Type 2 - metabolism ; Ethanol ; Feces ; Female ; Gas chromatography ; Gas Chromatography-Mass Spectrometry ; Gastrointestinal Microbiome ; Humanities and Social Sciences ; Insulin - blood ; Intestinal microflora ; Longitudinal Studies ; Male ; Mass spectrometry ; Metabolome ; Mice ; Mice, Knockout ; Monitoring, Physiologic ; multidisciplinary ; Multivariate Analysis ; Nervous system diseases ; Obesity - metabolism ; Organic compounds ; Pituitary ; Rodents ; Science ; Science (multidisciplinary) ; Scientific imaging ; VOCs ; Volatile organic compounds ; Volatile Organic Compounds - metabolism</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.18779-13, Article 18779</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</citedby><cites>FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</cites><orcidid>0000-0001-7170-5014 ; 0000-0002-2323-3304 ; 0000-0003-3613-5452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2324903366/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2324903366?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31827172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lourenço, Célia</creatorcontrib><creatorcontrib>Kelly, Darren</creatorcontrib><creatorcontrib>Cantillon, Jack</creatorcontrib><creatorcontrib>Cauchi, Michael</creatorcontrib><creatorcontrib>Yon, Marianne A.</creatorcontrib><creatorcontrib>Bentley, Liz</creatorcontrib><creatorcontrib>Cox, Roger D.</creatorcontrib><creatorcontrib>Turner, Claire</creatorcontrib><title>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single
Afmid
knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups
Afmid
and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone.
Afmid
mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.</description><subject>631/1647/320</subject><subject>64/60</subject><subject>692/53/2422</subject><subject>692/699/2743/137/773</subject><subject>Acetic acid</subject><subject>Adrenocorticotropic hormone</subject><subject>Animal models</subject><subject>Animals</subject><subject>Arylformamidase - genetics</subject><subject>Arylformamidase - metabolism</subject><subject>Blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>Cushing syndrome</subject><subject>Cushing Syndrome - diagnosis</subject><subject>Cushing Syndrome - metabolism</subject><subject>Data analysis</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - diagnosis</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Ethanol</subject><subject>Feces</subject><subject>Female</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gastrointestinal Microbiome</subject><subject>Humanities and Social Sciences</subject><subject>Insulin - blood</subject><subject>Intestinal microflora</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Metabolome</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Monitoring, Physiologic</subject><subject>multidisciplinary</subject><subject>Multivariate Analysis</subject><subject>Nervous system diseases</subject><subject>Obesity - metabolism</subject><subject>Organic compounds</subject><subject>Pituitary</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UbtuFDEUtRCIRCE_QIEs0dAM-DkzbpCiFS8piAZqy-O5s3HksRfbs9J2tHwCv8eX4MmGEChwYV9dn3Pu4yD0lJKXlPD-VRZUqr4hVDVScq4a9QCdMiJkwzhjD-_FJ-g852tSj2RKUPUYnXDas4527BR9_xiDKzG5sMXlsAPM8OjMAAUynlKc8T56U5wHPBmwxuMZihmijzNgF_BmyVeV-vPbj4zzIYxpzZsw4lyzlXQxzW7Ec1wy1HsEn_HeGWywj2HryjK6UDVzDQ5P0KPJ-Aznt-8Z-vL2zefN--by07sPm4vLxopOlEZwEABkBCm7fhBUKDLYiVnOem4mMIZNbaukqQOyvgUqQRFrlBxYJym3HT9Dr4-6u2WYYbQQSjJe75KbTTroaJz--ye4K72Ne90q0krWVoEXtwIpfl0gFz27bMF7E6AOquvO66JVT9Zaz_-BXscl1ZFvULV1zttVkB1RNsWcE0x3zVCiV7P10WxdzdY3ZmtVSc_uj3FH-W1tBfAjIO9WdyH9qf0f2V8J87hu</recordid><startdate>20191211</startdate><enddate>20191211</enddate><creator>Lourenço, Célia</creator><creator>Kelly, Darren</creator><creator>Cantillon, Jack</creator><creator>Cauchi, Michael</creator><creator>Yon, Marianne A.</creator><creator>Bentley, Liz</creator><creator>Cox, Roger D.</creator><creator>Turner, Claire</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7170-5014</orcidid><orcidid>https://orcid.org/0000-0002-2323-3304</orcidid><orcidid>https://orcid.org/0000-0003-3613-5452</orcidid></search><sort><creationdate>20191211</creationdate><title>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</title><author>Lourenço, Célia ; Kelly, Darren ; Cantillon, Jack ; Cauchi, Michael ; Yon, Marianne A. ; Bentley, Liz ; Cox, Roger D. ; Turner, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/1647/320</topic><topic>64/60</topic><topic>692/53/2422</topic><topic>692/699/2743/137/773</topic><topic>Acetic acid</topic><topic>Adrenocorticotropic hormone</topic><topic>Animal models</topic><topic>Animals</topic><topic>Arylformamidase - genetics</topic><topic>Arylformamidase - metabolism</topic><topic>Blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>Cushing syndrome</topic><topic>Cushing Syndrome - diagnosis</topic><topic>Cushing Syndrome - metabolism</topic><topic>Data analysis</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - diagnosis</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Ethanol</topic><topic>Feces</topic><topic>Female</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gastrointestinal Microbiome</topic><topic>Humanities and Social Sciences</topic><topic>Insulin - blood</topic><topic>Intestinal microflora</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Metabolome</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Monitoring, Physiologic</topic><topic>multidisciplinary</topic><topic>Multivariate Analysis</topic><topic>Nervous system diseases</topic><topic>Obesity - metabolism</topic><topic>Organic compounds</topic><topic>Pituitary</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourenço, Célia</creatorcontrib><creatorcontrib>Kelly, Darren</creatorcontrib><creatorcontrib>Cantillon, Jack</creatorcontrib><creatorcontrib>Cauchi, Michael</creatorcontrib><creatorcontrib>Yon, Marianne A.</creatorcontrib><creatorcontrib>Bentley, Liz</creatorcontrib><creatorcontrib>Cox, Roger D.</creatorcontrib><creatorcontrib>Turner, Claire</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourenço, Célia</au><au>Kelly, Darren</au><au>Cantillon, Jack</au><au>Cauchi, Michael</au><au>Yon, Marianne A.</au><au>Bentley, Liz</au><au>Cox, Roger D.</au><au>Turner, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-11</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>18779</spage><epage>13</epage><pages>18779-13</pages><artnum>18779</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D – Cushing’s syndrome and single
Afmid
knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups
Afmid
and Cushing’s mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing’s mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone.
Afmid
mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing’s mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31827172</pmid><doi>10.1038/s41598-019-55339-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7170-5014</orcidid><orcidid>https://orcid.org/0000-0002-2323-3304</orcidid><orcidid>https://orcid.org/0000-0003-3613-5452</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-12, Vol.9 (1), p.18779-13, Article 18779 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6906526 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/1647/320 64/60 692/53/2422 692/699/2743/137/773 Acetic acid Adrenocorticotropic hormone Animal models Animals Arylformamidase - genetics Arylformamidase - metabolism Blood glucose Blood Glucose - metabolism Cushing syndrome Cushing Syndrome - diagnosis Cushing Syndrome - metabolism Data analysis Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Experimental - diagnosis Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - metabolism Ethanol Feces Female Gas chromatography Gas Chromatography-Mass Spectrometry Gastrointestinal Microbiome Humanities and Social Sciences Insulin - blood Intestinal microflora Longitudinal Studies Male Mass spectrometry Metabolome Mice Mice, Knockout Monitoring, Physiologic multidisciplinary Multivariate Analysis Nervous system diseases Obesity - metabolism Organic compounds Pituitary Rodents Science Science (multidisciplinary) Scientific imaging VOCs Volatile organic compounds Volatile Organic Compounds - metabolism |
title | Monitoring type 2 diabetes from volatile faecal metabolome in Cushing’s syndrome and single Afmid mouse models via a longitudinal study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20type%202%20diabetes%20from%20volatile%20faecal%20metabolome%20in%20Cushing%E2%80%99s%20syndrome%20and%20single%20Afmid%20mouse%20models%20via%20a%20longitudinal%20study&rft.jtitle=Scientific%20reports&rft.au=Louren%C3%A7o,%20C%C3%A9lia&rft.date=2019-12-11&rft.volume=9&rft.issue=1&rft.spage=18779&rft.epage=13&rft.pages=18779-13&rft.artnum=18779&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-55339-9&rft_dat=%3Cproquest_pubme%3E2324903366%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-43e4ee0de5578b41490bcf2c3283afeaa2f6695a827286e15e90ca95b27513c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2324903366&rft_id=info:pmid/31827172&rfr_iscdi=true |