Loading…

Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease

Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2019, Vol.2019 (2019), p.1-8
Main Authors: Zhao, Lijie, Zhang, Xinwang, Guo, Shaoyong, Pang, Ting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3
cites cdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3
container_end_page 8
container_issue 2019
container_start_page 1
container_title BioMed research international
container_volume 2019
creator Zhao, Lijie
Zhang, Xinwang
Guo, Shaoyong
Pang, Ting
description Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation.
doi_str_mv 10.1155/2019/2045432
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6907046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614683146</galeid><sourcerecordid>A614683146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</originalsourceid><addsrcrecordid>eNqNkUFvEzEQhVcIRKvSG2dkiQsSBNYerze-IKUppZEiIUE4W449u3G1a4e1l8K_x6uEUDjhgz0z_vRmRq8ontPyLaVV9Y6VVOaLVxzYo-KcAeUzQTl9fIoBzorLGO_KfOZUlFI8Lc6AzmsqgZ0X3WJModfJGbIefUu-YNujT7kQPLnSES3JwQZ_pHFAor0l14h7coN6KkQSGnL7ebkhq163Ob13aUdWPuEQk0tOdwfVaxcxaz0rnjS6i3h5fC-KrzcfNsvb2frTx9VysZ4ZLmWaAZNbNFRIyaXlnFleA5SUaSmAGoMCrEVmKwCJiAwbTqsStqyWls713MBF8f6gux-3PVqTFxp0p_aD6_XwUwXt1N8_3u1UG74rIcu65CILvDoKDOHbiDGp3kWDXac9hjEqlucBznldZfTlP-hdGAef18sUY4JV9CHV6g6V803Ifc0kqhbZLzHPZk1t3xwoM4QYB2xOI9NSTX6ryW919DvjLx6ueYJ_u5uB1wdg57zV9-4_5TAz2Og_NGUggMMvsaa6Lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322625175</pqid></control><display><type>article</type><title>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</title><source>Wiley-Blackwell Open Access Titles (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Zhao, Lijie ; Zhang, Xinwang ; Guo, Shaoyong ; Pang, Ting</creator><contributor>Corsi, Cristiana ; Cristiana Corsi</contributor><creatorcontrib>Zhao, Lijie ; Zhang, Xinwang ; Guo, Shaoyong ; Pang, Ting ; Corsi, Cristiana ; Cristiana Corsi</creatorcontrib><description>Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2019/2045432</identifier><identifier>PMID: 31871932</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analysis ; Artificial neural networks ; Computed tomography ; CT imaging ; Databases, Factual ; Deep learning ; Diagnosis, Computer-Assisted - methods ; Diagnostic imaging ; Feature extraction ; Female ; Fuzzy sets ; Humans ; Image processing ; Image resolution ; Image segmentation ; International conferences ; Lung - diagnostic imaging ; Lung - pathology ; Lung diseases ; Lung Diseases, Interstitial - diagnostic imaging ; Male ; Mammography ; Medical imaging ; Medical imaging equipment ; Methods ; Middle Aged ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; Noise ; Noise reduction ; Pattern recognition ; Radiomics ; Signal processing ; Texture ; Tomography, X-Ray Computed - methods ; Training ; Wavelet transforms ; Wiener filtering</subject><ispartof>BioMed research international, 2019, Vol.2019 (2019), p.1-8</ispartof><rights>Copyright © 2019 Ting Pang et al.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Ting Pang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Ting Pang et al. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</citedby><cites>FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</cites><orcidid>0000-0001-8305-9785 ; 0000-0003-4927-9041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2322625175/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2322625175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31871932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Corsi, Cristiana</contributor><contributor>Cristiana Corsi</contributor><creatorcontrib>Zhao, Lijie</creatorcontrib><creatorcontrib>Zhang, Xinwang</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Pang, Ting</creatorcontrib><title>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>CT imaging</subject><subject>Databases, Factual</subject><subject>Deep learning</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic imaging</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>International conferences</subject><subject>Lung - diagnostic imaging</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>Lung Diseases, Interstitial - diagnostic imaging</subject><subject>Male</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Pattern recognition</subject><subject>Radiomics</subject><subject>Signal processing</subject><subject>Texture</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Training</subject><subject>Wavelet transforms</subject><subject>Wiener filtering</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkUFvEzEQhVcIRKvSG2dkiQsSBNYerze-IKUppZEiIUE4W449u3G1a4e1l8K_x6uEUDjhgz0z_vRmRq8ontPyLaVV9Y6VVOaLVxzYo-KcAeUzQTl9fIoBzorLGO_KfOZUlFI8Lc6AzmsqgZ0X3WJModfJGbIefUu-YNujT7kQPLnSES3JwQZ_pHFAor0l14h7coN6KkQSGnL7ebkhq163Ob13aUdWPuEQk0tOdwfVaxcxaz0rnjS6i3h5fC-KrzcfNsvb2frTx9VysZ4ZLmWaAZNbNFRIyaXlnFleA5SUaSmAGoMCrEVmKwCJiAwbTqsStqyWls713MBF8f6gux-3PVqTFxp0p_aD6_XwUwXt1N8_3u1UG74rIcu65CILvDoKDOHbiDGp3kWDXac9hjEqlucBznldZfTlP-hdGAef18sUY4JV9CHV6g6V803Ifc0kqhbZLzHPZk1t3xwoM4QYB2xOI9NSTX6ryW919DvjLx6ueYJ_u5uB1wdg57zV9-4_5TAz2Og_NGUggMMvsaa6Lw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhao, Lijie</creator><creator>Zhang, Xinwang</creator><creator>Guo, Shaoyong</creator><creator>Pang, Ting</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8305-9785</orcidid><orcidid>https://orcid.org/0000-0003-4927-9041</orcidid></search><sort><creationdate>2019</creationdate><title>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</title><author>Zhao, Lijie ; Zhang, Xinwang ; Guo, Shaoyong ; Pang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>CT imaging</topic><topic>Databases, Factual</topic><topic>Deep learning</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic imaging</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>International conferences</topic><topic>Lung - diagnostic imaging</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>Lung Diseases, Interstitial - diagnostic imaging</topic><topic>Male</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Pattern recognition</topic><topic>Radiomics</topic><topic>Signal processing</topic><topic>Texture</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Training</topic><topic>Wavelet transforms</topic><topic>Wiener filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lijie</creatorcontrib><creatorcontrib>Zhang, Xinwang</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Pang, Ting</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lijie</au><au>Zhang, Xinwang</au><au>Guo, Shaoyong</au><au>Pang, Ting</au><au>Corsi, Cristiana</au><au>Cristiana Corsi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31871932</pmid><doi>10.1155/2019/2045432</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8305-9785</orcidid><orcidid>https://orcid.org/0000-0003-4927-9041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2019, Vol.2019 (2019), p.1-8
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6907046
source Wiley-Blackwell Open Access Titles (Open Access); Publicly Available Content (ProQuest)
subjects Algorithms
Analysis
Artificial neural networks
Computed tomography
CT imaging
Databases, Factual
Deep learning
Diagnosis, Computer-Assisted - methods
Diagnostic imaging
Feature extraction
Female
Fuzzy sets
Humans
Image processing
Image resolution
Image segmentation
International conferences
Lung - diagnostic imaging
Lung - pathology
Lung diseases
Lung Diseases, Interstitial - diagnostic imaging
Male
Mammography
Medical imaging
Medical imaging equipment
Methods
Middle Aged
Models, Theoretical
Neural networks
Neural Networks, Computer
Noise
Noise reduction
Pattern recognition
Radiomics
Signal processing
Texture
Tomography, X-Ray Computed - methods
Training
Wavelet transforms
Wiener filtering
title Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Lung%20Segmentation%20Based%20on%20Texture%20and%20Deep%20Features%20of%20HRCT%20Images%20with%20Interstitial%20Lung%20Disease&rft.jtitle=BioMed%20research%20international&rft.au=Zhao,%20Lijie&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2019/2045432&rft_dat=%3Cgale_pubme%3EA614683146%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322625175&rft_id=info:pmid/31871932&rft_galeid=A614683146&rfr_iscdi=true