Loading…
Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease
Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model...
Saved in:
Published in: | BioMed research international 2019, Vol.2019 (2019), p.1-8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3 |
container_end_page | 8 |
container_issue | 2019 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2019 |
creator | Zhao, Lijie Zhang, Xinwang Guo, Shaoyong Pang, Ting |
description | Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation. |
doi_str_mv | 10.1155/2019/2045432 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6907046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A614683146</galeid><sourcerecordid>A614683146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</originalsourceid><addsrcrecordid>eNqNkUFvEzEQhVcIRKvSG2dkiQsSBNYerze-IKUppZEiIUE4W449u3G1a4e1l8K_x6uEUDjhgz0z_vRmRq8ontPyLaVV9Y6VVOaLVxzYo-KcAeUzQTl9fIoBzorLGO_KfOZUlFI8Lc6AzmsqgZ0X3WJModfJGbIefUu-YNujT7kQPLnSES3JwQZ_pHFAor0l14h7coN6KkQSGnL7ebkhq163Ob13aUdWPuEQk0tOdwfVaxcxaz0rnjS6i3h5fC-KrzcfNsvb2frTx9VysZ4ZLmWaAZNbNFRIyaXlnFleA5SUaSmAGoMCrEVmKwCJiAwbTqsStqyWls713MBF8f6gux-3PVqTFxp0p_aD6_XwUwXt1N8_3u1UG74rIcu65CILvDoKDOHbiDGp3kWDXac9hjEqlucBznldZfTlP-hdGAef18sUY4JV9CHV6g6V803Ifc0kqhbZLzHPZk1t3xwoM4QYB2xOI9NSTX6ryW919DvjLx6ueYJ_u5uB1wdg57zV9-4_5TAz2Og_NGUggMMvsaa6Lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322625175</pqid></control><display><type>article</type><title>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</title><source>Wiley-Blackwell Open Access Titles (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Zhao, Lijie ; Zhang, Xinwang ; Guo, Shaoyong ; Pang, Ting</creator><contributor>Corsi, Cristiana ; Cristiana Corsi</contributor><creatorcontrib>Zhao, Lijie ; Zhang, Xinwang ; Guo, Shaoyong ; Pang, Ting ; Corsi, Cristiana ; Cristiana Corsi</creatorcontrib><description>Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2019/2045432</identifier><identifier>PMID: 31871932</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analysis ; Artificial neural networks ; Computed tomography ; CT imaging ; Databases, Factual ; Deep learning ; Diagnosis, Computer-Assisted - methods ; Diagnostic imaging ; Feature extraction ; Female ; Fuzzy sets ; Humans ; Image processing ; Image resolution ; Image segmentation ; International conferences ; Lung - diagnostic imaging ; Lung - pathology ; Lung diseases ; Lung Diseases, Interstitial - diagnostic imaging ; Male ; Mammography ; Medical imaging ; Medical imaging equipment ; Methods ; Middle Aged ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; Noise ; Noise reduction ; Pattern recognition ; Radiomics ; Signal processing ; Texture ; Tomography, X-Ray Computed - methods ; Training ; Wavelet transforms ; Wiener filtering</subject><ispartof>BioMed research international, 2019, Vol.2019 (2019), p.1-8</ispartof><rights>Copyright © 2019 Ting Pang et al.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>Copyright © 2019 Ting Pang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Ting Pang et al. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</citedby><cites>FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</cites><orcidid>0000-0001-8305-9785 ; 0000-0003-4927-9041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2322625175/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2322625175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31871932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Corsi, Cristiana</contributor><contributor>Cristiana Corsi</contributor><creatorcontrib>Zhao, Lijie</creatorcontrib><creatorcontrib>Zhang, Xinwang</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Pang, Ting</creatorcontrib><title>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>CT imaging</subject><subject>Databases, Factual</subject><subject>Deep learning</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnostic imaging</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>International conferences</subject><subject>Lung - diagnostic imaging</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>Lung Diseases, Interstitial - diagnostic imaging</subject><subject>Male</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Pattern recognition</subject><subject>Radiomics</subject><subject>Signal processing</subject><subject>Texture</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Training</subject><subject>Wavelet transforms</subject><subject>Wiener filtering</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkUFvEzEQhVcIRKvSG2dkiQsSBNYerze-IKUppZEiIUE4W449u3G1a4e1l8K_x6uEUDjhgz0z_vRmRq8ontPyLaVV9Y6VVOaLVxzYo-KcAeUzQTl9fIoBzorLGO_KfOZUlFI8Lc6AzmsqgZ0X3WJModfJGbIefUu-YNujT7kQPLnSES3JwQZ_pHFAor0l14h7coN6KkQSGnL7ebkhq163Ob13aUdWPuEQk0tOdwfVaxcxaz0rnjS6i3h5fC-KrzcfNsvb2frTx9VysZ4ZLmWaAZNbNFRIyaXlnFleA5SUaSmAGoMCrEVmKwCJiAwbTqsStqyWls713MBF8f6gux-3PVqTFxp0p_aD6_XwUwXt1N8_3u1UG74rIcu65CILvDoKDOHbiDGp3kWDXac9hjEqlucBznldZfTlP-hdGAef18sUY4JV9CHV6g6V803Ifc0kqhbZLzHPZk1t3xwoM4QYB2xOI9NSTX6ryW919DvjLx6ueYJ_u5uB1wdg57zV9-4_5TAz2Og_NGUggMMvsaa6Lw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhao, Lijie</creator><creator>Zhang, Xinwang</creator><creator>Guo, Shaoyong</creator><creator>Pang, Ting</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8305-9785</orcidid><orcidid>https://orcid.org/0000-0003-4927-9041</orcidid></search><sort><creationdate>2019</creationdate><title>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</title><author>Zhao, Lijie ; Zhang, Xinwang ; Guo, Shaoyong ; Pang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>CT imaging</topic><topic>Databases, Factual</topic><topic>Deep learning</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnostic imaging</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>International conferences</topic><topic>Lung - diagnostic imaging</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>Lung Diseases, Interstitial - diagnostic imaging</topic><topic>Male</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Pattern recognition</topic><topic>Radiomics</topic><topic>Signal processing</topic><topic>Texture</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Training</topic><topic>Wavelet transforms</topic><topic>Wiener filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lijie</creatorcontrib><creatorcontrib>Zhang, Xinwang</creatorcontrib><creatorcontrib>Guo, Shaoyong</creatorcontrib><creatorcontrib>Pang, Ting</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lijie</au><au>Zhang, Xinwang</au><au>Guo, Shaoyong</au><au>Pang, Ting</au><au>Corsi, Cristiana</au><au>Cristiana Corsi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Lung segmentation in high-resolution computed tomography (HRCT) images is necessary before the computer-aided diagnosis (CAD) of interstitial lung disease (ILD). Traditional methods are less intelligent and have lower accuracy of segmentation. This paper develops a novel automatic segmentation model using radiomics with a combination of hand-crafted features and deep features. The study uses ILD Database-MedGIFT from 128 patients with 108 annotated image series and selects 1946 regions of interest (ROI) of lung tissue patterns for training and testing. First, images are denoised by Wiener filter. Then, segmentation is performed by fusion of features that are extracted from the gray-level co-occurrence matrix (GLCM) which is a classic texture analysis method and U-Net which is a standard convolutional neural network (CNN). The final experiment result for segmentation in terms of dice similarity coefficient (DSC) is 89.42%, which is comparable to the state-of-the-art methods. The training performance shows the effectiveness for a combination of texture and deep radiomics features in lung segmentation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31871932</pmid><doi>10.1155/2019/2045432</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8305-9785</orcidid><orcidid>https://orcid.org/0000-0003-4927-9041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2019, Vol.2019 (2019), p.1-8 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6907046 |
source | Wiley-Blackwell Open Access Titles (Open Access); Publicly Available Content (ProQuest) |
subjects | Algorithms Analysis Artificial neural networks Computed tomography CT imaging Databases, Factual Deep learning Diagnosis, Computer-Assisted - methods Diagnostic imaging Feature extraction Female Fuzzy sets Humans Image processing Image resolution Image segmentation International conferences Lung - diagnostic imaging Lung - pathology Lung diseases Lung Diseases, Interstitial - diagnostic imaging Male Mammography Medical imaging Medical imaging equipment Methods Middle Aged Models, Theoretical Neural networks Neural Networks, Computer Noise Noise reduction Pattern recognition Radiomics Signal processing Texture Tomography, X-Ray Computed - methods Training Wavelet transforms Wiener filtering |
title | Automatic Lung Segmentation Based on Texture and Deep Features of HRCT Images with Interstitial Lung Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Lung%20Segmentation%20Based%20on%20Texture%20and%20Deep%20Features%20of%20HRCT%20Images%20with%20Interstitial%20Lung%20Disease&rft.jtitle=BioMed%20research%20international&rft.au=Zhao,%20Lijie&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2019/2045432&rft_dat=%3Cgale_pubme%3EA614683146%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-329bec169949d442d4733012a9631cce63dde2d5339eee2ef41503b279d18a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2322625175&rft_id=info:pmid/31871932&rft_galeid=A614683146&rfr_iscdi=true |