Loading…

Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease

Literature documents the impact of Parkinson’s Disease (PD) on speech but no study has analyzed in detail the importance of the distinct phonemic groups for the automatic identification of the disease. This study presents new approaches that are evaluated in three different corpora containing speake...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-12, Vol.9 (1), p.19066-16, Article 19066
Main Authors: Moro-Velazquez, Laureano, Gomez-Garcia, Jorge A., Godino-Llorente, Juan I., Grandas-Perez, Francisco, Shattuck-Hufnagel, Stefanie, Yagüe-Jimenez, Virginia, Dehak, Najim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-8ddbc143be1e48d55551bc174e2742bc1c3cba07a0c23cd385693e099d5659bd3
cites cdi_FETCH-LOGICAL-c474t-8ddbc143be1e48d55551bc174e2742bc1c3cba07a0c23cd385693e099d5659bd3
container_end_page 16
container_issue 1
container_start_page 19066
container_title Scientific reports
container_volume 9
creator Moro-Velazquez, Laureano
Gomez-Garcia, Jorge A.
Godino-Llorente, Juan I.
Grandas-Perez, Francisco
Shattuck-Hufnagel, Stefanie
Yagüe-Jimenez, Virginia
Dehak, Najim
description Literature documents the impact of Parkinson’s Disease (PD) on speech but no study has analyzed in detail the importance of the distinct phonemic groups for the automatic identification of the disease. This study presents new approaches that are evaluated in three different corpora containing speakers suffering from PD with two main objectives: to investigate the influence of the different phonemic groups in the detection of PD and to propose more accurate detection schemes employing speech. The proposed methodology uses GMM-UBM classifiers combined with a technique introduced in this paper called phonemic grouping, that permits observation of the differences in accuracy depending on the manner of articulation. Cross-validation results reach accuracies between 85% and 94% with AUC ranging from 0.91 to 0.98, while cross-corpora trials yield accuracies between 75% and 82% with AUC between 0.84 and 0.95, depending on the corpus. This is the first work analyzing the generalization properties of the proposed approaches employing cross-corpora trials and reaching high accuracies. Among the different phonemic groups, results suggest that plosives, vowels and fricatives are the most relevant acoustic segments for the detection of PD with the proposed schemes. In addition, the use of text-dependent utterances leads to more consistent and accurate models.
doi_str_mv 10.1038/s41598-019-55271-y
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6910953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325911730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8ddbc143be1e48d55551bc174e2742bc1c3cba07a0c23cd385693e099d5659bd3</originalsourceid><addsrcrecordid>eNp9UbtOAzEQtBAIEPADFOgk6gM_c-cGCfGWkKCA2vLZm8SQ2Id9h5SO3-D3-BIcEgI0bOPV7MzsyoPQPsFHBLP6OHEiZF1iIkshaEXK2RrappiLkjJK13_1W2gvpSecS1DJidxEW4zUbFBxvo2G9-PgoXOmiDCBV-0NFNrbop3D0wyPYuhb50dFGBapBTDjwvmiG2da34WpnkstdGA6F_ycdK_js_Mp-I-391ScuwQ6wS7aGOpJgr3lu4MeLy8ezq7L27urm7PT29LwindlbW1jCGcNEOC1FblIBioOtOI0d4aZRuNKY0OZsawWA8kAS2nFQMjGsh10svBt-2YK1oDvop6oNrqpjjMVtFN_J96N1Si8qoEkWAqWDQ6XBjG89JA69RT66PPNKv-lkIRUDGcWXbBMDClFGK42EKzm8ahFPCrHo77iUbMsOvh920ryHUYmsAUh5ZEfQfzZ_Y_tJ3rGnrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325911730</pqid></control><display><type>article</type><title>Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Moro-Velazquez, Laureano ; Gomez-Garcia, Jorge A. ; Godino-Llorente, Juan I. ; Grandas-Perez, Francisco ; Shattuck-Hufnagel, Stefanie ; Yagüe-Jimenez, Virginia ; Dehak, Najim</creator><creatorcontrib>Moro-Velazquez, Laureano ; Gomez-Garcia, Jorge A. ; Godino-Llorente, Juan I. ; Grandas-Perez, Francisco ; Shattuck-Hufnagel, Stefanie ; Yagüe-Jimenez, Virginia ; Dehak, Najim</creatorcontrib><description>Literature documents the impact of Parkinson’s Disease (PD) on speech but no study has analyzed in detail the importance of the distinct phonemic groups for the automatic identification of the disease. This study presents new approaches that are evaluated in three different corpora containing speakers suffering from PD with two main objectives: to investigate the influence of the different phonemic groups in the detection of PD and to propose more accurate detection schemes employing speech. The proposed methodology uses GMM-UBM classifiers combined with a technique introduced in this paper called phonemic grouping, that permits observation of the differences in accuracy depending on the manner of articulation. Cross-validation results reach accuracies between 85% and 94% with AUC ranging from 0.91 to 0.98, while cross-corpora trials yield accuracies between 75% and 82% with AUC between 0.84 and 0.95, depending on the corpus. This is the first work analyzing the generalization properties of the proposed approaches employing cross-corpora trials and reaching high accuracies. Among the different phonemic groups, results suggest that plosives, vowels and fricatives are the most relevant acoustic segments for the detection of PD with the proposed schemes. In addition, the use of text-dependent utterances leads to more consistent and accurate models.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-55271-y</identifier><identifier>PMID: 31836744</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/53/2421 ; 692/617/375/1718 ; 692/699/375/365/1718 ; 9/10 ; Adult ; Aged ; Aged, 80 and over ; Area Under Curve ; Female ; Humanities and Social Sciences ; Humans ; Male ; Middle Aged ; Movement disorders ; multidisciplinary ; Neurodegenerative diseases ; Parkinson Disease - physiopathology ; Parkinson's disease ; Phonetics ; Science ; Science (multidisciplinary) ; Sound Spectrography ; Speech - physiology</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.19066-16, Article 19066</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8ddbc143be1e48d55551bc174e2742bc1c3cba07a0c23cd385693e099d5659bd3</citedby><cites>FETCH-LOGICAL-c474t-8ddbc143be1e48d55551bc174e2742bc1c3cba07a0c23cd385693e099d5659bd3</cites><orcidid>0000-0002-3033-7005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2325911730/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2325911730?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31836744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moro-Velazquez, Laureano</creatorcontrib><creatorcontrib>Gomez-Garcia, Jorge A.</creatorcontrib><creatorcontrib>Godino-Llorente, Juan I.</creatorcontrib><creatorcontrib>Grandas-Perez, Francisco</creatorcontrib><creatorcontrib>Shattuck-Hufnagel, Stefanie</creatorcontrib><creatorcontrib>Yagüe-Jimenez, Virginia</creatorcontrib><creatorcontrib>Dehak, Najim</creatorcontrib><title>Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Literature documents the impact of Parkinson’s Disease (PD) on speech but no study has analyzed in detail the importance of the distinct phonemic groups for the automatic identification of the disease. This study presents new approaches that are evaluated in three different corpora containing speakers suffering from PD with two main objectives: to investigate the influence of the different phonemic groups in the detection of PD and to propose more accurate detection schemes employing speech. The proposed methodology uses GMM-UBM classifiers combined with a technique introduced in this paper called phonemic grouping, that permits observation of the differences in accuracy depending on the manner of articulation. Cross-validation results reach accuracies between 85% and 94% with AUC ranging from 0.91 to 0.98, while cross-corpora trials yield accuracies between 75% and 82% with AUC between 0.84 and 0.95, depending on the corpus. This is the first work analyzing the generalization properties of the proposed approaches employing cross-corpora trials and reaching high accuracies. Among the different phonemic groups, results suggest that plosives, vowels and fricatives are the most relevant acoustic segments for the detection of PD with the proposed schemes. In addition, the use of text-dependent utterances leads to more consistent and accurate models.</description><subject>692/53/2421</subject><subject>692/617/375/1718</subject><subject>692/699/375/365/1718</subject><subject>9/10</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Area Under Curve</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Movement disorders</subject><subject>multidisciplinary</subject><subject>Neurodegenerative diseases</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Phonetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sound Spectrography</subject><subject>Speech - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UbtOAzEQtBAIEPADFOgk6gM_c-cGCfGWkKCA2vLZm8SQ2Id9h5SO3-D3-BIcEgI0bOPV7MzsyoPQPsFHBLP6OHEiZF1iIkshaEXK2RrappiLkjJK13_1W2gvpSecS1DJidxEW4zUbFBxvo2G9-PgoXOmiDCBV-0NFNrbop3D0wyPYuhb50dFGBapBTDjwvmiG2da34WpnkstdGA6F_ycdK_js_Mp-I-391ScuwQ6wS7aGOpJgr3lu4MeLy8ezq7L27urm7PT29LwindlbW1jCGcNEOC1FblIBioOtOI0d4aZRuNKY0OZsawWA8kAS2nFQMjGsh10svBt-2YK1oDvop6oNrqpjjMVtFN_J96N1Si8qoEkWAqWDQ6XBjG89JA69RT66PPNKv-lkIRUDGcWXbBMDClFGK42EKzm8ahFPCrHo77iUbMsOvh920ryHUYmsAUh5ZEfQfzZ_Y_tJ3rGnrA</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Moro-Velazquez, Laureano</creator><creator>Gomez-Garcia, Jorge A.</creator><creator>Godino-Llorente, Juan I.</creator><creator>Grandas-Perez, Francisco</creator><creator>Shattuck-Hufnagel, Stefanie</creator><creator>Yagüe-Jimenez, Virginia</creator><creator>Dehak, Najim</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3033-7005</orcidid></search><sort><creationdate>20191213</creationdate><title>Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease</title><author>Moro-Velazquez, Laureano ; Gomez-Garcia, Jorge A. ; Godino-Llorente, Juan I. ; Grandas-Perez, Francisco ; Shattuck-Hufnagel, Stefanie ; Yagüe-Jimenez, Virginia ; Dehak, Najim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8ddbc143be1e48d55551bc174e2742bc1c3cba07a0c23cd385693e099d5659bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>692/53/2421</topic><topic>692/617/375/1718</topic><topic>692/699/375/365/1718</topic><topic>9/10</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Area Under Curve</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Movement disorders</topic><topic>multidisciplinary</topic><topic>Neurodegenerative diseases</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Phonetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sound Spectrography</topic><topic>Speech - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moro-Velazquez, Laureano</creatorcontrib><creatorcontrib>Gomez-Garcia, Jorge A.</creatorcontrib><creatorcontrib>Godino-Llorente, Juan I.</creatorcontrib><creatorcontrib>Grandas-Perez, Francisco</creatorcontrib><creatorcontrib>Shattuck-Hufnagel, Stefanie</creatorcontrib><creatorcontrib>Yagüe-Jimenez, Virginia</creatorcontrib><creatorcontrib>Dehak, Najim</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moro-Velazquez, Laureano</au><au>Gomez-Garcia, Jorge A.</au><au>Godino-Llorente, Juan I.</au><au>Grandas-Perez, Francisco</au><au>Shattuck-Hufnagel, Stefanie</au><au>Yagüe-Jimenez, Virginia</au><au>Dehak, Najim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-13</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>19066</spage><epage>16</epage><pages>19066-16</pages><artnum>19066</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Literature documents the impact of Parkinson’s Disease (PD) on speech but no study has analyzed in detail the importance of the distinct phonemic groups for the automatic identification of the disease. This study presents new approaches that are evaluated in three different corpora containing speakers suffering from PD with two main objectives: to investigate the influence of the different phonemic groups in the detection of PD and to propose more accurate detection schemes employing speech. The proposed methodology uses GMM-UBM classifiers combined with a technique introduced in this paper called phonemic grouping, that permits observation of the differences in accuracy depending on the manner of articulation. Cross-validation results reach accuracies between 85% and 94% with AUC ranging from 0.91 to 0.98, while cross-corpora trials yield accuracies between 75% and 82% with AUC between 0.84 and 0.95, depending on the corpus. This is the first work analyzing the generalization properties of the proposed approaches employing cross-corpora trials and reaching high accuracies. Among the different phonemic groups, results suggest that plosives, vowels and fricatives are the most relevant acoustic segments for the detection of PD with the proposed schemes. In addition, the use of text-dependent utterances leads to more consistent and accurate models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31836744</pmid><doi>10.1038/s41598-019-55271-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3033-7005</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.19066-16, Article 19066
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6910953
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 692/53/2421
692/617/375/1718
692/699/375/365/1718
9/10
Adult
Aged
Aged, 80 and over
Area Under Curve
Female
Humanities and Social Sciences
Humans
Male
Middle Aged
Movement disorders
multidisciplinary
Neurodegenerative diseases
Parkinson Disease - physiopathology
Parkinson's disease
Phonetics
Science
Science (multidisciplinary)
Sound Spectrography
Speech - physiology
title Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonetic%20relevance%20and%20phonemic%20grouping%20of%20speech%20in%20the%20automatic%20detection%20of%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Scientific%20reports&rft.au=Moro-Velazquez,%20Laureano&rft.date=2019-12-13&rft.volume=9&rft.issue=1&rft.spage=19066&rft.epage=16&rft.pages=19066-16&rft.artnum=19066&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-55271-y&rft_dat=%3Cproquest_pubme%3E2325911730%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-8ddbc143be1e48d55551bc174e2742bc1c3cba07a0c23cd385693e099d5659bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2325911730&rft_id=info:pmid/31836744&rfr_iscdi=true