Loading…

Fabrication and Characteristics of PCL Membranes Containing Strontium-Substituted Hydroxyapatite Nanofibers for Guided Bone Regeneration

Poly(ε-caprolactone) (PCL) membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). In addition, hydroxyapatite is the major inorganic component and an essential composition of hard bone and teeth. Recently, numerous studies have demonstrated that stron...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2019-10, Vol.11 (11), p.1761
Main Authors: Tsai, Shiao-Wen, Yu, Wen-Xin, Hwang, Pai-An, Hsu, Yu-Wei, Hsu, Fu-Yin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(ε-caprolactone) (PCL) membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). In addition, hydroxyapatite is the major inorganic component and an essential composition of hard bone and teeth. Recently, numerous studies have demonstrated that strontium-substituted hydroxyapatite (SrHA) not only enhances osteogenesis but also inhibits adipogenesis of mesenchymal stem cells. Therefore, SrHA incorporated into PCL could be an alternative material for GBR. In this study, strontium-substituted hydroxyapatite nanofibers (SrHANFs) were fabricated by a sol-gel route followed by electrospinning. We then fabricated PCL-SrHANF membranes as cell culture substrates and assessed the cellular behavior of osteoblast-like cells. Based on the observations of alkaline phosphatase (ALP) activity, bone sialoprotein (BSP) and osteocalcin (OCN) immunofluorescence staining, and Alizarin Red-S staining of cells cultured on the PCL-SrHANF and PCL membranes, we concluded that SrHANFs can promote the differentiation and mineralization of osteoblast-like cells and that PCL-SrHANF membranes have potential for GBR applications.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11111761