Loading…

Management controls the net greenhouse gas outcomes of growing bioenergy feedstocks on marginally productive croplands

Bio-based energy is key to developing a globally sustainable low-carbon economy. Lignocellulosic feedstock production on marginally productive croplands is expected to provide substantial climate mitigation benefits, but long-term field research comparing greenhouse gas (GHG) outcomes during the pro...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2019-12, Vol.5 (12), p.eaav9318-eaav9318
Main Authors: Jin, Virginia L, Schmer, Marty R, Stewart, Catherine E, Mitchell, Robert B, Williams, Candiss O, Wienhold, Brian J, Varvel, Gary E, Follett, Ronald F, Kimble, John, Vogel, Kenneth P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bio-based energy is key to developing a globally sustainable low-carbon economy. Lignocellulosic feedstock production on marginally productive croplands is expected to provide substantial climate mitigation benefits, but long-term field research comparing greenhouse gas (GHG) outcomes during the production of annual versus perennial crop-based feedstocks is lacking. Here, we show that long-term (16 years) switchgrass ( L.) systems mitigate GHG emissions during the feedstock production phase compared to GHG-neutral continuous corn ( L.) under conservation management on marginally productive cropland. Increased soil organic carbon was the major GHG sink in all feedstock systems, but net agronomic GHG outcomes hinged on soil nitrous oxide emissions controlled by nitrogen (N) fertilizer rate. This long-term field study is the first to demonstrate that annual crop and perennial grass systems respectively maintain or mitigate atmospheric GHG contributions during the agronomic phase of bioenergy production, providing flexibility for land-use decisions on marginally productive croplands.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aav9318