Loading…
Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations
We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemogl...
Saved in:
Published in: | Journal of cerebral blood flow and metabolism 2020-01, Vol.40 (1), p.135-149 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993 |
---|---|
cites | cdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993 |
container_end_page | 149 |
container_issue | 1 |
container_start_page | 135 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 40 |
creator | Elting, Jan Willem J Tas, Jeanette Aries, Marcel JH Czosnyka, Marek Maurits, Natasha M |
description | We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations. |
doi_str_mv | 10.1177/0271678X18806107 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6927073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X18806107</sage_id><sourcerecordid>2125309804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</originalsourceid><addsrcrecordid>eNp1UUtv1DAQthCILoU7J-Qjl8A4Thz7goRaXlIlLj1wsxzHWVw5drCTrfYH8r-YJaUqSFxseb7XeIaQlwzeMNZ1b6HumOjkNyYlCAbdI7JjbauqDph4THYnuDrhZ-RZKTcAIHnbPiVnHHjLO8F35OflMZrJW2pddn02gZp1Sdnt12AWnyJ1ZfGTWVyhg8v-4AY65jTR6EymPo7ZZCyV2dklp2LTfKQmDnTJJhaLh0fHyzTPwWWKVFr85ANKzbhgxaacUXnKGVPeVH6hmOh-2_QhJQwM6fbB85DCijim-bA1WZ6TJ6MJxb24u8_J9ccP1xefq6uvn75cvL-qbAuwVIORtRikZFwKoYzsB6F67sCMXDQCOOeK26YGJfteWSv6ljWjahvbDCCV4ufk3WY7r_3kBusidhz0nHFC-aiT8fpvJPrvep8OWqi6g46jwes7g5x-rDhaPfliHX4jurQWXbO65RgPDVJho1qca8luvI9hoE_L1_8uHyWvHrZ3L_izbSRUG6GYvdM3ac0Rp_V_w18h6b5H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125309804</pqid></control><display><type>article</type><title>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</title><source>PubMed Central Free</source><source>Sage Journals Online</source><creator>Elting, Jan Willem J ; Tas, Jeanette ; Aries, Marcel JH ; Czosnyka, Marek ; Maurits, Natasha M</creator><creatorcontrib>Elting, Jan Willem J ; Tas, Jeanette ; Aries, Marcel JH ; Czosnyka, Marek ; Maurits, Natasha M</creatorcontrib><description>We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X18806107</identifier><identifier>PMID: 30353763</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Original</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-01, Vol.40 (1), p.135-149</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</citedby><cites>FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927073/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927073/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30353763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elting, Jan Willem J</creatorcontrib><creatorcontrib>Tas, Jeanette</creatorcontrib><creatorcontrib>Aries, Marcel JH</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Maurits, Natasha M</creatorcontrib><title>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.</description><subject>Original</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1UUtv1DAQthCILoU7J-Qjl8A4Thz7goRaXlIlLj1wsxzHWVw5drCTrfYH8r-YJaUqSFxseb7XeIaQlwzeMNZ1b6HumOjkNyYlCAbdI7JjbauqDph4THYnuDrhZ-RZKTcAIHnbPiVnHHjLO8F35OflMZrJW2pddn02gZp1Sdnt12AWnyJ1ZfGTWVyhg8v-4AY65jTR6EymPo7ZZCyV2dklp2LTfKQmDnTJJhaLh0fHyzTPwWWKVFr85ANKzbhgxaacUXnKGVPeVH6hmOh-2_QhJQwM6fbB85DCijim-bA1WZ6TJ6MJxb24u8_J9ccP1xefq6uvn75cvL-qbAuwVIORtRikZFwKoYzsB6F67sCMXDQCOOeK26YGJfteWSv6ljWjahvbDCCV4ufk3WY7r_3kBusidhz0nHFC-aiT8fpvJPrvep8OWqi6g46jwes7g5x-rDhaPfliHX4jurQWXbO65RgPDVJho1qca8luvI9hoE_L1_8uHyWvHrZ3L_izbSRUG6GYvdM3ac0Rp_V_w18h6b5H</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Elting, Jan Willem J</creator><creator>Tas, Jeanette</creator><creator>Aries, Marcel JH</creator><creator>Czosnyka, Marek</creator><creator>Maurits, Natasha M</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</title><author>Elting, Jan Willem J ; Tas, Jeanette ; Aries, Marcel JH ; Czosnyka, Marek ; Maurits, Natasha M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elting, Jan Willem J</creatorcontrib><creatorcontrib>Tas, Jeanette</creatorcontrib><creatorcontrib>Aries, Marcel JH</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Maurits, Natasha M</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elting, Jan Willem J</au><au>Tas, Jeanette</au><au>Aries, Marcel JH</au><au>Czosnyka, Marek</au><au>Maurits, Natasha M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>40</volume><issue>1</issue><spage>135</spage><epage>149</epage><pages>135-149</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30353763</pmid><doi>10.1177/0271678X18806107</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2020-01, Vol.40 (1), p.135-149 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6927073 |
source | PubMed Central Free; Sage Journals Online |
subjects | Original |
title | Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20cerebral%20autoregulation%20estimates%20derived%20from%20near%20infrared%20spectroscopy%20and%20transcranial%20Doppler%20are%20similar%20after%20correction%20for%20transit%20time%20and%20blood%20flow%20and%20blood%20volume%20oscillations&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Elting,%20Jan%20Willem%20J&rft.date=2020-01-01&rft.volume=40&rft.issue=1&rft.spage=135&rft.epage=149&rft.pages=135-149&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X18806107&rft_dat=%3Cproquest_pubme%3E2125309804%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125309804&rft_id=info:pmid/30353763&rft_sage_id=10.1177_0271678X18806107&rfr_iscdi=true |