Loading…

Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations

We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemogl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 2020-01, Vol.40 (1), p.135-149
Main Authors: Elting, Jan Willem J, Tas, Jeanette, Aries, Marcel JH, Czosnyka, Marek, Maurits, Natasha M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993
cites cdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993
container_end_page 149
container_issue 1
container_start_page 135
container_title Journal of cerebral blood flow and metabolism
container_volume 40
creator Elting, Jan Willem J
Tas, Jeanette
Aries, Marcel JH
Czosnyka, Marek
Maurits, Natasha M
description We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.
doi_str_mv 10.1177/0271678X18806107
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6927073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X18806107</sage_id><sourcerecordid>2125309804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</originalsourceid><addsrcrecordid>eNp1UUtv1DAQthCILoU7J-Qjl8A4Thz7goRaXlIlLj1wsxzHWVw5drCTrfYH8r-YJaUqSFxseb7XeIaQlwzeMNZ1b6HumOjkNyYlCAbdI7JjbauqDph4THYnuDrhZ-RZKTcAIHnbPiVnHHjLO8F35OflMZrJW2pddn02gZp1Sdnt12AWnyJ1ZfGTWVyhg8v-4AY65jTR6EymPo7ZZCyV2dklp2LTfKQmDnTJJhaLh0fHyzTPwWWKVFr85ANKzbhgxaacUXnKGVPeVH6hmOh-2_QhJQwM6fbB85DCijim-bA1WZ6TJ6MJxb24u8_J9ccP1xefq6uvn75cvL-qbAuwVIORtRikZFwKoYzsB6F67sCMXDQCOOeK26YGJfteWSv6ljWjahvbDCCV4ufk3WY7r_3kBusidhz0nHFC-aiT8fpvJPrvep8OWqi6g46jwes7g5x-rDhaPfliHX4jurQWXbO65RgPDVJho1qca8luvI9hoE_L1_8uHyWvHrZ3L_izbSRUG6GYvdM3ac0Rp_V_w18h6b5H</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125309804</pqid></control><display><type>article</type><title>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</title><source>PubMed Central Free</source><source>Sage Journals Online</source><creator>Elting, Jan Willem J ; Tas, Jeanette ; Aries, Marcel JH ; Czosnyka, Marek ; Maurits, Natasha M</creator><creatorcontrib>Elting, Jan Willem J ; Tas, Jeanette ; Aries, Marcel JH ; Czosnyka, Marek ; Maurits, Natasha M</creatorcontrib><description>We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X18806107</identifier><identifier>PMID: 30353763</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Original</subject><ispartof>Journal of cerebral blood flow and metabolism, 2020-01, Vol.40 (1), p.135-149</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018 2018 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</citedby><cites>FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927073/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927073/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30353763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elting, Jan Willem J</creatorcontrib><creatorcontrib>Tas, Jeanette</creatorcontrib><creatorcontrib>Aries, Marcel JH</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Maurits, Natasha M</creatorcontrib><title>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.</description><subject>Original</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1UUtv1DAQthCILoU7J-Qjl8A4Thz7goRaXlIlLj1wsxzHWVw5drCTrfYH8r-YJaUqSFxseb7XeIaQlwzeMNZ1b6HumOjkNyYlCAbdI7JjbauqDph4THYnuDrhZ-RZKTcAIHnbPiVnHHjLO8F35OflMZrJW2pddn02gZp1Sdnt12AWnyJ1ZfGTWVyhg8v-4AY65jTR6EymPo7ZZCyV2dklp2LTfKQmDnTJJhaLh0fHyzTPwWWKVFr85ANKzbhgxaacUXnKGVPeVH6hmOh-2_QhJQwM6fbB85DCijim-bA1WZ6TJ6MJxb24u8_J9ccP1xefq6uvn75cvL-qbAuwVIORtRikZFwKoYzsB6F67sCMXDQCOOeK26YGJfteWSv6ljWjahvbDCCV4ufk3WY7r_3kBusidhz0nHFC-aiT8fpvJPrvep8OWqi6g46jwes7g5x-rDhaPfliHX4jurQWXbO65RgPDVJho1qca8luvI9hoE_L1_8uHyWvHrZ3L_izbSRUG6GYvdM3ac0Rp_V_w18h6b5H</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Elting, Jan Willem J</creator><creator>Tas, Jeanette</creator><creator>Aries, Marcel JH</creator><creator>Czosnyka, Marek</creator><creator>Maurits, Natasha M</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</title><author>Elting, Jan Willem J ; Tas, Jeanette ; Aries, Marcel JH ; Czosnyka, Marek ; Maurits, Natasha M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elting, Jan Willem J</creatorcontrib><creatorcontrib>Tas, Jeanette</creatorcontrib><creatorcontrib>Aries, Marcel JH</creatorcontrib><creatorcontrib>Czosnyka, Marek</creatorcontrib><creatorcontrib>Maurits, Natasha M</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elting, Jan Willem J</au><au>Tas, Jeanette</au><au>Aries, Marcel JH</au><au>Czosnyka, Marek</au><au>Maurits, Natasha M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>40</volume><issue>1</issue><spage>135</spage><epage>149</epage><pages>135-149</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>We analysed mean arterial blood pressure, cerebral blood flow velocity, oxygenated haemoglobin and deoxygenated haemoglobin signals to estimate dynamic cerebral autoregulation. We compared macrovascular (mean arterial blood pressure-cerebral blood flow velocity) and microvascular (oxygenated haemoglobin-deoxygenated haemoglobin) dynamic cerebral autoregulation estimates during three different conditions: rest, mild hypocapnia and hypercapnia. Microvascular dynamic cerebral autoregulation estimates were created by introducing the constant time lag plus constant phase shift model, which enables correction for transit time, blood flow and blood volume oscillations (TT-BF/BV correction). After TT-BF/BV correction, a significant agreement between mean arterial blood pressure-cerebral blood flow velocity and oxygenated haemoglobin-deoxygenated haemoglobin phase differences in the low frequency band was found during rest (left: intraclass correlation=0.6, median phase difference 29.5° vs. 30.7°, right: intraclass correlation=0.56, median phase difference 32.6° vs. 39.8°) and mild hypocapnia (left: intraclass correlation=0.73, median phase difference 48.6° vs. 43.3°, right: intraclass correlation=0.70, median phase difference 52.1° vs. 61.8°). During hypercapnia, the mean transit time decreased and blood volume oscillations became much more prominent, except for very low frequencies. The transit time related to blood flow oscillations was remarkably stable during all conditions. We conclude that non-invasive microvascular dynamic cerebral autoregulation estimates are similar to macrovascular dynamic cerebral autoregulation estimates, after TT-BF/BV correction is applied. These findings may increase the feasibility of non-invasive continuous autoregulation monitoring and guided therapy in clinical situations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>30353763</pmid><doi>10.1177/0271678X18806107</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2020-01, Vol.40 (1), p.135-149
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6927073
source PubMed Central Free; Sage Journals Online
subjects Original
title Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20cerebral%20autoregulation%20estimates%20derived%20from%20near%20infrared%20spectroscopy%20and%20transcranial%20Doppler%20are%20similar%20after%20correction%20for%20transit%20time%20and%20blood%20flow%20and%20blood%20volume%20oscillations&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Elting,%20Jan%20Willem%20J&rft.date=2020-01-01&rft.volume=40&rft.issue=1&rft.spage=135&rft.epage=149&rft.pages=135-149&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X18806107&rft_dat=%3Cproquest_pubme%3E2125309804%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-da826d88138669a8bd69b3e0af3646033393c42098bb9cc6b514f954c4d08993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2125309804&rft_id=info:pmid/30353763&rft_sage_id=10.1177_0271678X18806107&rfr_iscdi=true