Loading…
Sustaining cerebral perfusion in intracranial atherosclerotic stenosis: The roles of antegrade residual flow and leptomeningeal collateral flow
We aimed to investigate the roles of antegrade residual flow and leptomeningeal collateral flow in sustaining cerebral perfusion distal to an intracranial atherosclerotic stenosis (ICAS). Patients with apparently normal cerebral perfusion distal to a symptomatic middle cerebral artery (MCA)-M1 steno...
Saved in:
Published in: | Journal of cerebral blood flow and metabolism 2020-01, Vol.40 (1), p.126-134 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We aimed to investigate the roles of antegrade residual flow and leptomeningeal collateral flow in sustaining cerebral perfusion distal to an intracranial atherosclerotic stenosis (ICAS). Patients with apparently normal cerebral perfusion distal to a symptomatic middle cerebral artery (MCA)-M1 stenosis were enrolled. Computational fluid dynamics models were built based on CT angiography to obtain a translesional pressure ratio (PR) to gauge the residual antegrade flow. Leptomeningeal collaterals (LMCs) were scaled on CT angiography. Cerebral perfusion metrics were obtained in CT perfusion maps. Among 83 patients, linear regression analyses revealed that both translesional PR and LMC scale were independently associated with relative ipsilesional mean transit time (rMTT). Subgroup analyses showed that ipsilesional rMTT was significantly associated with translesional PR (p  |
---|---|
ISSN: | 0271-678X 1559-7016 |
DOI: | 10.1177/0271678X18805209 |