Loading…

The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos

The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes....

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2019-12, Vol.20 (23), p.6066
Main Authors: Idrees, Muhammad, Xu, Lianguang, El Sheikh, Marwa, Sidrat, Tabinda, Song, Seok-Hwan, Joo, Myeong-Don, Lee, Kyeong-Lim, Kong, Il-Keun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-e4e8a68d8a61d5c3fe4d8793d3ded216165679a8ac2c602ac2eb08a2c935f7b73
cites cdi_FETCH-LOGICAL-c412t-e4e8a68d8a61d5c3fe4d8793d3ded216165679a8ac2c602ac2eb08a2c935f7b73
container_end_page
container_issue 23
container_start_page 6066
container_title International journal of molecular sciences
container_volume 20
creator Idrees, Muhammad
Xu, Lianguang
El Sheikh, Marwa
Sidrat, Tabinda
Song, Seok-Hwan
Joo, Myeong-Don
Lee, Kyeong-Lim
Kong, Il-Keun
description The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current study aimed to determine the role of PPARδ in fatty acid β-oxidation and its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty acids and mitochondrial β-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization. Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality.
doi_str_mv 10.3390/ijms20236066
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548648093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e4e8a68d8a61d5c3fe4d8793d3ded216165679a8ac2c602ac2eb08a2c935f7b73</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxiMEoqVw44wsceFAqP_ETnJB2i5LqViJCC3iaHntSdarxA52stI-Bu_Cc_BMuGqpFi6ekebnT_PNl2UvCX7HWI0v7X6IFFMmsBCPsnNSUJpjLMrHJ_1Z9izGPU4U5fXT7IyRimBSsvPs52YHqGkWX3__QovOOxsndP2dY8KJQDfDGPwBIlrb0ffHyerL264DZzW6Ur1yGtC0C37udmjZbAhSzqBm1Sw_IzMH67o0BfQBDtD7cQA3Id-iJkCelNPvSU3WO3TlD9YBWg3bcPTxefakVX2EF_f1Ivv2cbVZfsrXX65vlot1rgtCpxwKqJSoTHqI4Zq1UJiqrJlhBgwlggguylpVSlMtME0FtrhSVNeMt-W2ZBfZ-zvdcd4OYHTaLqhejsEOKhylV1b-O3F2Jzt_kKKmVcloEnhzLxD8jxniJAcbNfTJGPg5ynRsWvKC0yKhr_9D934OLtmTlBeVKCpcs0S9vaN08DEGaB-WIVjeZi1Ps074q1MDD_DfcNkfJcSmHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548648093</pqid></control><display><type>article</type><title>The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos</title><source>PubMed Central (Open access)</source><source>Publicly Available Content Database</source><creator>Idrees, Muhammad ; Xu, Lianguang ; El Sheikh, Marwa ; Sidrat, Tabinda ; Song, Seok-Hwan ; Joo, Myeong-Don ; Lee, Kyeong-Lim ; Kong, Il-Keun</creator><creatorcontrib>Idrees, Muhammad ; Xu, Lianguang ; El Sheikh, Marwa ; Sidrat, Tabinda ; Song, Seok-Hwan ; Joo, Myeong-Don ; Lee, Kyeong-Lim ; Kong, Il-Keun</creatorcontrib><description>The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current study aimed to determine the role of PPARδ in fatty acid β-oxidation and its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty acids and mitochondrial β-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization. Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20236066</identifier><identifier>PMID: 31810173</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Apoptosis ; Carnitine O-Palmitoyltransferase - genetics ; Cattle ; Cell growth ; Embryonic Development - genetics ; Embryos ; Fatty acids ; Fatty Acids, Nonesterified - metabolism ; Gametocytes ; Glucose metabolism ; Homeostasis ; In vitro fertilization ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Lipogenesis ; Lipogenesis - drug effects ; Lipolysis ; Lipolysis - drug effects ; Localization ; Medical research ; Membrane potential ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - genetics ; Muscle, Skeletal - growth &amp; development ; Muscle, Skeletal - metabolism ; NF-κB protein ; Oxidation ; Oxidation-Reduction ; Peroxisome proliferator-activated receptors ; Phosphoenolpyruvate Carboxylase - genetics ; PPAR delta - genetics ; Proteins ; Roles ; Thiazoles - pharmacology ; Triglycerides</subject><ispartof>International journal of molecular sciences, 2019-12, Vol.20 (23), p.6066</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e4e8a68d8a61d5c3fe4d8793d3ded216165679a8ac2c602ac2eb08a2c935f7b73</citedby><cites>FETCH-LOGICAL-c412t-e4e8a68d8a61d5c3fe4d8793d3ded216165679a8ac2c602ac2eb08a2c935f7b73</cites><orcidid>0000-0001-5567-1088 ; 0000-0001-6707-2736 ; 0000-0002-9715-0691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548648093/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548648093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31810173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Idrees, Muhammad</creatorcontrib><creatorcontrib>Xu, Lianguang</creatorcontrib><creatorcontrib>El Sheikh, Marwa</creatorcontrib><creatorcontrib>Sidrat, Tabinda</creatorcontrib><creatorcontrib>Song, Seok-Hwan</creatorcontrib><creatorcontrib>Joo, Myeong-Don</creatorcontrib><creatorcontrib>Lee, Kyeong-Lim</creatorcontrib><creatorcontrib>Kong, Il-Keun</creatorcontrib><title>The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current study aimed to determine the role of PPARδ in fatty acid β-oxidation and its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty acids and mitochondrial β-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization. Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Carnitine O-Palmitoyltransferase - genetics</subject><subject>Cattle</subject><subject>Cell growth</subject><subject>Embryonic Development - genetics</subject><subject>Embryos</subject><subject>Fatty acids</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Gametocytes</subject><subject>Glucose metabolism</subject><subject>Homeostasis</subject><subject>In vitro fertilization</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Lipogenesis - drug effects</subject><subject>Lipolysis</subject><subject>Lipolysis - drug effects</subject><subject>Localization</subject><subject>Medical research</subject><subject>Membrane potential</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - genetics</subject><subject>Muscle, Skeletal - growth &amp; development</subject><subject>Muscle, Skeletal - metabolism</subject><subject>NF-κB protein</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phosphoenolpyruvate Carboxylase - genetics</subject><subject>PPAR delta - genetics</subject><subject>Proteins</subject><subject>Roles</subject><subject>Thiazoles - pharmacology</subject><subject>Triglycerides</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc9u1DAQxiMEoqVw44wsceFAqP_ETnJB2i5LqViJCC3iaHntSdarxA52stI-Bu_Cc_BMuGqpFi6ekebnT_PNl2UvCX7HWI0v7X6IFFMmsBCPsnNSUJpjLMrHJ_1Z9izGPU4U5fXT7IyRimBSsvPs52YHqGkWX3__QovOOxsndP2dY8KJQDfDGPwBIlrb0ffHyerL264DZzW6Ur1yGtC0C37udmjZbAhSzqBm1Sw_IzMH67o0BfQBDtD7cQA3Id-iJkCelNPvSU3WO3TlD9YBWg3bcPTxefakVX2EF_f1Ivv2cbVZfsrXX65vlot1rgtCpxwKqJSoTHqI4Zq1UJiqrJlhBgwlggguylpVSlMtME0FtrhSVNeMt-W2ZBfZ-zvdcd4OYHTaLqhejsEOKhylV1b-O3F2Jzt_kKKmVcloEnhzLxD8jxniJAcbNfTJGPg5ynRsWvKC0yKhr_9D934OLtmTlBeVKCpcs0S9vaN08DEGaB-WIVjeZi1Ps074q1MDD_DfcNkfJcSmHg</recordid><startdate>20191202</startdate><enddate>20191202</enddate><creator>Idrees, Muhammad</creator><creator>Xu, Lianguang</creator><creator>El Sheikh, Marwa</creator><creator>Sidrat, Tabinda</creator><creator>Song, Seok-Hwan</creator><creator>Joo, Myeong-Don</creator><creator>Lee, Kyeong-Lim</creator><creator>Kong, Il-Keun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5567-1088</orcidid><orcidid>https://orcid.org/0000-0001-6707-2736</orcidid><orcidid>https://orcid.org/0000-0002-9715-0691</orcidid></search><sort><creationdate>20191202</creationdate><title>The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos</title><author>Idrees, Muhammad ; Xu, Lianguang ; El Sheikh, Marwa ; Sidrat, Tabinda ; Song, Seok-Hwan ; Joo, Myeong-Don ; Lee, Kyeong-Lim ; Kong, Il-Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e4e8a68d8a61d5c3fe4d8793d3ded216165679a8ac2c602ac2eb08a2c935f7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Carnitine O-Palmitoyltransferase - genetics</topic><topic>Cattle</topic><topic>Cell growth</topic><topic>Embryonic Development - genetics</topic><topic>Embryos</topic><topic>Fatty acids</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Gametocytes</topic><topic>Glucose metabolism</topic><topic>Homeostasis</topic><topic>In vitro fertilization</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Lipogenesis - drug effects</topic><topic>Lipolysis</topic><topic>Lipolysis - drug effects</topic><topic>Localization</topic><topic>Medical research</topic><topic>Membrane potential</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - genetics</topic><topic>Muscle, Skeletal - growth &amp; development</topic><topic>Muscle, Skeletal - metabolism</topic><topic>NF-κB protein</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phosphoenolpyruvate Carboxylase - genetics</topic><topic>PPAR delta - genetics</topic><topic>Proteins</topic><topic>Roles</topic><topic>Thiazoles - pharmacology</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idrees, Muhammad</creatorcontrib><creatorcontrib>Xu, Lianguang</creatorcontrib><creatorcontrib>El Sheikh, Marwa</creatorcontrib><creatorcontrib>Sidrat, Tabinda</creatorcontrib><creatorcontrib>Song, Seok-Hwan</creatorcontrib><creatorcontrib>Joo, Myeong-Don</creatorcontrib><creatorcontrib>Lee, Kyeong-Lim</creatorcontrib><creatorcontrib>Kong, Il-Keun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idrees, Muhammad</au><au>Xu, Lianguang</au><au>El Sheikh, Marwa</au><au>Sidrat, Tabinda</au><au>Song, Seok-Hwan</au><au>Joo, Myeong-Don</au><au>Lee, Kyeong-Lim</au><au>Kong, Il-Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-12-02</date><risdate>2019</risdate><volume>20</volume><issue>23</issue><spage>6066</spage><pages>6066-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current study aimed to determine the role of PPARδ in fatty acid β-oxidation and its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty acids and mitochondrial β-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization. Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31810173</pmid><doi>10.3390/ijms20236066</doi><orcidid>https://orcid.org/0000-0001-5567-1088</orcidid><orcidid>https://orcid.org/0000-0001-6707-2736</orcidid><orcidid>https://orcid.org/0000-0002-9715-0691</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-12, Vol.20 (23), p.6066
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928732
source PubMed Central (Open access); Publicly Available Content Database
subjects Animals
Apoptosis
Carnitine O-Palmitoyltransferase - genetics
Cattle
Cell growth
Embryonic Development - genetics
Embryos
Fatty acids
Fatty Acids, Nonesterified - metabolism
Gametocytes
Glucose metabolism
Homeostasis
In vitro fertilization
Lipid metabolism
Lipid Metabolism - genetics
Lipids
Lipogenesis
Lipogenesis - drug effects
Lipolysis
Lipolysis - drug effects
Localization
Medical research
Membrane potential
Metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - genetics
Muscle, Skeletal - growth & development
Muscle, Skeletal - metabolism
NF-κB protein
Oxidation
Oxidation-Reduction
Peroxisome proliferator-activated receptors
Phosphoenolpyruvate Carboxylase - genetics
PPAR delta - genetics
Proteins
Roles
Thiazoles - pharmacology
Triglycerides
title The PPARδ Agonist GW501516 Improves Lipolytic/Lipogenic Balance through CPT1 and PEPCK during the Development of Pre-Implantation Bovine Embryos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T09%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20PPAR%CE%B4%20Agonist%20GW501516%20Improves%20Lipolytic/Lipogenic%20Balance%20through%20CPT1%20and%20PEPCK%20during%20the%20Development%20of%20Pre-Implantation%20Bovine%20Embryos&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Idrees,%20Muhammad&rft.date=2019-12-02&rft.volume=20&rft.issue=23&rft.spage=6066&rft.pages=6066-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20236066&rft_dat=%3Cproquest_pubme%3E2548648093%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-e4e8a68d8a61d5c3fe4d8793d3ded216165679a8ac2c602ac2eb08a2c935f7b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548648093&rft_id=info:pmid/31810173&rfr_iscdi=true