Loading…
Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore
Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical "transparency window" of biological tissue...
Saved in:
Published in: | International journal of molecular sciences 2019-12, Vol.20 (23), p.6067 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-47d1995720212d5bca5834102ebfb5d3b5385334dd1fb7daa907020cff02f0743 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-47d1995720212d5bca5834102ebfb5d3b5385334dd1fb7daa907020cff02f0743 |
container_end_page | |
container_issue | 23 |
container_start_page | 6067 |
container_title | International journal of molecular sciences |
container_volume | 20 |
creator | Stepanenko, Olesya V Stepanenko, Olga V Shpironok, Olesya G Fonin, Alexander V Kuznetsova, Irina M Turoverov, Konstantin K |
description | Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical "transparency window" of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from
BphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV. |
doi_str_mv | 10.3390/ijms20236067 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322753153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-47d1995720212d5bca5834102ebfb5d3b5385334dd1fb7daa907020cff02f0743</originalsourceid><addsrcrecordid>eNpdkTtPwzAUhS0E4lHYmFEkFgYCftbJggQVj0q8BpgYrBvHIS5JXOwU1H-PKwoqTPfhT0f3-CC0T_AJYzk-tZM2UEzZEA_lGtomnNIUx359pd9COyFMcKSoyDfRFiMZwUTybfRyb8Cn467y4E2Z3IF_Mz4kBYQ4uS65AN0bb6FJHut573TtXWtC8mn7erHRTs-hc4VtbJdASCAZLQg3rZ03u2ijgiaYvWUdoOery6fRTXr7cD0end-mmhPap1yWJM-FjCYILUWhQWSME0xNURWiZIVgmWCMlyWpClkC5FhiinVVYVphydkAnX3rTmdFa0ptut5Do6betuDnyoFVf186W6tX96GGOc1kPowCR0sB795nJvSqtUGbpoHOuFlQ8duoFIzEKwbo8B86cTPfRXuKCp6JnMuMRur4m9LeheBN9XsMwWqRmlpNLeIHqwZ-4Z-Y2Bf3G5OM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548594782</pqid></control><display><type>article</type><title>Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Stepanenko, Olesya V ; Stepanenko, Olga V ; Shpironok, Olesya G ; Fonin, Alexander V ; Kuznetsova, Irina M ; Turoverov, Konstantin K</creator><creatorcontrib>Stepanenko, Olesya V ; Stepanenko, Olga V ; Shpironok, Olesya G ; Fonin, Alexander V ; Kuznetsova, Irina M ; Turoverov, Konstantin K</creatorcontrib><description>Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical "transparency window" of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from
BphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20236067</identifier><identifier>PMID: 31810174</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bacteria ; Bacteria - chemistry ; Bacterial Proteins - chemistry ; Biliverdin ; Biliverdine - chemistry ; Biomarkers ; Biomarkers - chemistry ; Biomedical materials ; Biosensors ; Chromophores ; Cysteine - chemistry ; Fluorescence ; I.R. radiation ; Kinases ; Ligands ; Luminescent Proteins - chemistry ; Luminescent Proteins - isolation & purification ; Photoreceptors ; Phycobilins - chemistry ; Phycocyanin - chemistry ; Phycocyanobilin ; Phytochrome - chemistry ; Phytochromes ; Protein Binding ; Proteins ; Tetrapyrroles - chemistry ; Tissues</subject><ispartof>International journal of molecular sciences, 2019-12, Vol.20 (23), p.6067</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-47d1995720212d5bca5834102ebfb5d3b5385334dd1fb7daa907020cff02f0743</citedby><cites>FETCH-LOGICAL-c412t-47d1995720212d5bca5834102ebfb5d3b5385334dd1fb7daa907020cff02f0743</cites><orcidid>0000-0003-4469-2531 ; 0000-0003-3779-6711 ; 0000-0002-6977-1896 ; 0000-0002-9145-3480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548594782/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548594782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31810174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stepanenko, Olesya V</creatorcontrib><creatorcontrib>Stepanenko, Olga V</creatorcontrib><creatorcontrib>Shpironok, Olesya G</creatorcontrib><creatorcontrib>Fonin, Alexander V</creatorcontrib><creatorcontrib>Kuznetsova, Irina M</creatorcontrib><creatorcontrib>Turoverov, Konstantin K</creatorcontrib><title>Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical "transparency window" of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from
BphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.</description><subject>Bacteria</subject><subject>Bacteria - chemistry</subject><subject>Bacterial Proteins - chemistry</subject><subject>Biliverdin</subject><subject>Biliverdine - chemistry</subject><subject>Biomarkers</subject><subject>Biomarkers - chemistry</subject><subject>Biomedical materials</subject><subject>Biosensors</subject><subject>Chromophores</subject><subject>Cysteine - chemistry</subject><subject>Fluorescence</subject><subject>I.R. radiation</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - isolation & purification</subject><subject>Photoreceptors</subject><subject>Phycobilins - chemistry</subject><subject>Phycocyanin - chemistry</subject><subject>Phycocyanobilin</subject><subject>Phytochrome - chemistry</subject><subject>Phytochromes</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Tetrapyrroles - chemistry</subject><subject>Tissues</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkTtPwzAUhS0E4lHYmFEkFgYCftbJggQVj0q8BpgYrBvHIS5JXOwU1H-PKwoqTPfhT0f3-CC0T_AJYzk-tZM2UEzZEA_lGtomnNIUx359pd9COyFMcKSoyDfRFiMZwUTybfRyb8Cn467y4E2Z3IF_Mz4kBYQ4uS65AN0bb6FJHut573TtXWtC8mn7erHRTs-hc4VtbJdASCAZLQg3rZ03u2ijgiaYvWUdoOery6fRTXr7cD0end-mmhPap1yWJM-FjCYILUWhQWSME0xNURWiZIVgmWCMlyWpClkC5FhiinVVYVphydkAnX3rTmdFa0ptut5Do6betuDnyoFVf186W6tX96GGOc1kPowCR0sB795nJvSqtUGbpoHOuFlQ8duoFIzEKwbo8B86cTPfRXuKCp6JnMuMRur4m9LeheBN9XsMwWqRmlpNLeIHqwZ-4Z-Y2Bf3G5OM</recordid><startdate>20191202</startdate><enddate>20191202</enddate><creator>Stepanenko, Olesya V</creator><creator>Stepanenko, Olga V</creator><creator>Shpironok, Olesya G</creator><creator>Fonin, Alexander V</creator><creator>Kuznetsova, Irina M</creator><creator>Turoverov, Konstantin K</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4469-2531</orcidid><orcidid>https://orcid.org/0000-0003-3779-6711</orcidid><orcidid>https://orcid.org/0000-0002-6977-1896</orcidid><orcidid>https://orcid.org/0000-0002-9145-3480</orcidid></search><sort><creationdate>20191202</creationdate><title>Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore</title><author>Stepanenko, Olesya V ; Stepanenko, Olga V ; Shpironok, Olesya G ; Fonin, Alexander V ; Kuznetsova, Irina M ; Turoverov, Konstantin K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-47d1995720212d5bca5834102ebfb5d3b5385334dd1fb7daa907020cff02f0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Bacteria - chemistry</topic><topic>Bacterial Proteins - chemistry</topic><topic>Biliverdin</topic><topic>Biliverdine - chemistry</topic><topic>Biomarkers</topic><topic>Biomarkers - chemistry</topic><topic>Biomedical materials</topic><topic>Biosensors</topic><topic>Chromophores</topic><topic>Cysteine - chemistry</topic><topic>Fluorescence</topic><topic>I.R. radiation</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - isolation & purification</topic><topic>Photoreceptors</topic><topic>Phycobilins - chemistry</topic><topic>Phycocyanin - chemistry</topic><topic>Phycocyanobilin</topic><topic>Phytochrome - chemistry</topic><topic>Phytochromes</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Tetrapyrroles - chemistry</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanenko, Olesya V</creatorcontrib><creatorcontrib>Stepanenko, Olga V</creatorcontrib><creatorcontrib>Shpironok, Olesya G</creatorcontrib><creatorcontrib>Fonin, Alexander V</creatorcontrib><creatorcontrib>Kuznetsova, Irina M</creatorcontrib><creatorcontrib>Turoverov, Konstantin K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanenko, Olesya V</au><au>Stepanenko, Olga V</au><au>Shpironok, Olesya G</au><au>Fonin, Alexander V</au><au>Kuznetsova, Irina M</au><au>Turoverov, Konstantin K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-12-02</date><risdate>2019</risdate><volume>20</volume><issue>23</issue><spage>6067</spage><pages>6067-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical "transparency window" of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from
BphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31810174</pmid><doi>10.3390/ijms20236067</doi><orcidid>https://orcid.org/0000-0003-4469-2531</orcidid><orcidid>https://orcid.org/0000-0003-3779-6711</orcidid><orcidid>https://orcid.org/0000-0002-6977-1896</orcidid><orcidid>https://orcid.org/0000-0002-9145-3480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2019-12, Vol.20 (23), p.6067 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928796 |
source | Publicly Available Content Database; PubMed Central(OpenAccess) |
subjects | Bacteria Bacteria - chemistry Bacterial Proteins - chemistry Biliverdin Biliverdine - chemistry Biomarkers Biomarkers - chemistry Biomedical materials Biosensors Chromophores Cysteine - chemistry Fluorescence I.R. radiation Kinases Ligands Luminescent Proteins - chemistry Luminescent Proteins - isolation & purification Photoreceptors Phycobilins - chemistry Phycocyanin - chemistry Phycocyanobilin Phytochrome - chemistry Phytochromes Protein Binding Proteins Tetrapyrroles - chemistry Tissues |
title | Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-Infrared%20Markers%20based%20on%20Bacterial%20Phytochromes%20with%20Phycocyanobilin%20as%20a%20Chromophore&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Stepanenko,%20Olesya%20V&rft.date=2019-12-02&rft.volume=20&rft.issue=23&rft.spage=6067&rft.pages=6067-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20236067&rft_dat=%3Cproquest_pubme%3E2322753153%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-47d1995720212d5bca5834102ebfb5d3b5385334dd1fb7daa907020cff02f0743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548594782&rft_id=info:pmid/31810174&rfr_iscdi=true |