Loading…
Pixelated Carrier Phase-Shifting Shearography Using Spatiotemporal Low-Pass Filtering Algorithm
Shearography has been widely used in non-destructive testing due to its advantages in providing full-field, high precision, real-time measurement. The study presents a pixelated carrier phase-shifting shearography using a pixelated micropolarizer array. Based on the shearography, a series of shearog...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-11, Vol.19 (23), p.5185 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-587d74479c4fd85c931dfa8a123cf81f9491e779b9dc913b9e1a796221564cba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-587d74479c4fd85c931dfa8a123cf81f9491e779b9dc913b9e1a796221564cba3 |
container_end_page | |
container_issue | 23 |
container_start_page | 5185 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Yan, Peizheng Liu, Xiangwei Wu, Shuangle Sun, Fangyuan Zhao, Qihan Wang, Yonghong |
description | Shearography has been widely used in non-destructive testing due to its advantages in providing full-field, high precision, real-time measurement. The study presents a pixelated carrier phase-shifting shearography using a pixelated micropolarizer array. Based on the shearography, a series of shearograms are captured and phase maps corresponding to deformation are measured dynamically and continuously. Using the proposed spatiotemporal filtering algorithm in the complex domain, the set of phase maps are simultaneously low-pass filtered in the spatial and temporal domains, resulting in better phase quality than spatial low-pass filtering. By accumulating the temporally adjacent phase, the phase corresponding to large deformation can be evaluated; thus, large deformations can be accurately measured and protected from speckle noise, allowing internal defects to be easily identified. The capability of the proposed shearography is described by theoretical discussions and experiments. |
doi_str_mv | 10.3390/s19235185 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535563411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-587d74479c4fd85c931dfa8a123cf81f9491e779b9dc913b9e1a796221564cba3</originalsourceid><addsrcrecordid>eNpdkc1qGzEURkVoSNy0i7xAGegmXUwi6UqWtCkYk7QFQwxJ1kLWaDwKM6OpJLfx22ecH-N2dcXV4eNcPoTOCb4EUPgqEUWBE8mP0IQwykpJKf5w8D5FH1N6xJgCgDxBp0CEUJTLCdJL_-Rak11VzE2M3sVi2ZjkyrvG19n36-KucSaGdTRDsy0e0stqMNmH7LohRNMWi_C3XJqUihvfZhd3xKxdh-hz031Cx7Vpk_v8Ns_Qw831_fxnubj98Ws-W5SWYcgll6ISjAllWV1JbhWQqjbSEAq2lqRWTBE3Oq9UZRWBlXLECDWllPApsysDZ-j7a-6wWXWusq7Po5oeou9M3OpgvP73p_eNXoc_eqqolAqPARdvATH83riUdeeTdW1rehc2SVOgGIQQlIzo1__Qx7CJ_Xiephw4nwIjO-rbK2VjSCm6ei9DsN7Vpve1jeyXQ_s9-d4TPANk0pM0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535563411</pqid></control><display><type>article</type><title>Pixelated Carrier Phase-Shifting Shearography Using Spatiotemporal Low-Pass Filtering Algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yan, Peizheng ; Liu, Xiangwei ; Wu, Shuangle ; Sun, Fangyuan ; Zhao, Qihan ; Wang, Yonghong</creator><creatorcontrib>Yan, Peizheng ; Liu, Xiangwei ; Wu, Shuangle ; Sun, Fangyuan ; Zhao, Qihan ; Wang, Yonghong</creatorcontrib><description>Shearography has been widely used in non-destructive testing due to its advantages in providing full-field, high precision, real-time measurement. The study presents a pixelated carrier phase-shifting shearography using a pixelated micropolarizer array. Based on the shearography, a series of shearograms are captured and phase maps corresponding to deformation are measured dynamically and continuously. Using the proposed spatiotemporal filtering algorithm in the complex domain, the set of phase maps are simultaneously low-pass filtered in the spatial and temporal domains, resulting in better phase quality than spatial low-pass filtering. By accumulating the temporally adjacent phase, the phase corresponding to large deformation can be evaluated; thus, large deformations can be accurately measured and protected from speckle noise, allowing internal defects to be easily identified. The capability of the proposed shearography is described by theoretical discussions and experiments.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19235185</identifier><identifier>PMID: 31779258</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Deformation ; Domains ; Fourier transforms ; Interferometry ; Low pass filters ; Noise ; Nondestructive testing ; Shearography</subject><ispartof>Sensors (Basel, Switzerland), 2019-11, Vol.19 (23), p.5185</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-587d74479c4fd85c931dfa8a123cf81f9491e779b9dc913b9e1a796221564cba3</citedby><cites>FETCH-LOGICAL-c403t-587d74479c4fd85c931dfa8a123cf81f9491e779b9dc913b9e1a796221564cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535563411/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535563411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31779258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Peizheng</creatorcontrib><creatorcontrib>Liu, Xiangwei</creatorcontrib><creatorcontrib>Wu, Shuangle</creatorcontrib><creatorcontrib>Sun, Fangyuan</creatorcontrib><creatorcontrib>Zhao, Qihan</creatorcontrib><creatorcontrib>Wang, Yonghong</creatorcontrib><title>Pixelated Carrier Phase-Shifting Shearography Using Spatiotemporal Low-Pass Filtering Algorithm</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Shearography has been widely used in non-destructive testing due to its advantages in providing full-field, high precision, real-time measurement. The study presents a pixelated carrier phase-shifting shearography using a pixelated micropolarizer array. Based on the shearography, a series of shearograms are captured and phase maps corresponding to deformation are measured dynamically and continuously. Using the proposed spatiotemporal filtering algorithm in the complex domain, the set of phase maps are simultaneously low-pass filtered in the spatial and temporal domains, resulting in better phase quality than spatial low-pass filtering. By accumulating the temporally adjacent phase, the phase corresponding to large deformation can be evaluated; thus, large deformations can be accurately measured and protected from speckle noise, allowing internal defects to be easily identified. The capability of the proposed shearography is described by theoretical discussions and experiments.</description><subject>Algorithms</subject><subject>Deformation</subject><subject>Domains</subject><subject>Fourier transforms</subject><subject>Interferometry</subject><subject>Low pass filters</subject><subject>Noise</subject><subject>Nondestructive testing</subject><subject>Shearography</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1qGzEURkVoSNy0i7xAGegmXUwi6UqWtCkYk7QFQwxJ1kLWaDwKM6OpJLfx22ecH-N2dcXV4eNcPoTOCb4EUPgqEUWBE8mP0IQwykpJKf5w8D5FH1N6xJgCgDxBp0CEUJTLCdJL_-Rak11VzE2M3sVi2ZjkyrvG19n36-KucSaGdTRDsy0e0stqMNmH7LohRNMWi_C3XJqUihvfZhd3xKxdh-hz031Cx7Vpk_v8Ns_Qw831_fxnubj98Ws-W5SWYcgll6ISjAllWV1JbhWQqjbSEAq2lqRWTBE3Oq9UZRWBlXLECDWllPApsysDZ-j7a-6wWXWusq7Po5oeou9M3OpgvP73p_eNXoc_eqqolAqPARdvATH83riUdeeTdW1rehc2SVOgGIQQlIzo1__Qx7CJ_Xiephw4nwIjO-rbK2VjSCm6ei9DsN7Vpve1jeyXQ_s9-d4TPANk0pM0</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Yan, Peizheng</creator><creator>Liu, Xiangwei</creator><creator>Wu, Shuangle</creator><creator>Sun, Fangyuan</creator><creator>Zhao, Qihan</creator><creator>Wang, Yonghong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191126</creationdate><title>Pixelated Carrier Phase-Shifting Shearography Using Spatiotemporal Low-Pass Filtering Algorithm</title><author>Yan, Peizheng ; Liu, Xiangwei ; Wu, Shuangle ; Sun, Fangyuan ; Zhao, Qihan ; Wang, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-587d74479c4fd85c931dfa8a123cf81f9491e779b9dc913b9e1a796221564cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Deformation</topic><topic>Domains</topic><topic>Fourier transforms</topic><topic>Interferometry</topic><topic>Low pass filters</topic><topic>Noise</topic><topic>Nondestructive testing</topic><topic>Shearography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Peizheng</creatorcontrib><creatorcontrib>Liu, Xiangwei</creatorcontrib><creatorcontrib>Wu, Shuangle</creatorcontrib><creatorcontrib>Sun, Fangyuan</creatorcontrib><creatorcontrib>Zhao, Qihan</creatorcontrib><creatorcontrib>Wang, Yonghong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Peizheng</au><au>Liu, Xiangwei</au><au>Wu, Shuangle</au><au>Sun, Fangyuan</au><au>Zhao, Qihan</au><au>Wang, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pixelated Carrier Phase-Shifting Shearography Using Spatiotemporal Low-Pass Filtering Algorithm</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-11-26</date><risdate>2019</risdate><volume>19</volume><issue>23</issue><spage>5185</spage><pages>5185-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Shearography has been widely used in non-destructive testing due to its advantages in providing full-field, high precision, real-time measurement. The study presents a pixelated carrier phase-shifting shearography using a pixelated micropolarizer array. Based on the shearography, a series of shearograms are captured and phase maps corresponding to deformation are measured dynamically and continuously. Using the proposed spatiotemporal filtering algorithm in the complex domain, the set of phase maps are simultaneously low-pass filtered in the spatial and temporal domains, resulting in better phase quality than spatial low-pass filtering. By accumulating the temporally adjacent phase, the phase corresponding to large deformation can be evaluated; thus, large deformations can be accurately measured and protected from speckle noise, allowing internal defects to be easily identified. The capability of the proposed shearography is described by theoretical discussions and experiments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31779258</pmid><doi>10.3390/s19235185</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-11, Vol.19 (23), p.5185 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928890 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Deformation Domains Fourier transforms Interferometry Low pass filters Noise Nondestructive testing Shearography |
title | Pixelated Carrier Phase-Shifting Shearography Using Spatiotemporal Low-Pass Filtering Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pixelated%20Carrier%20Phase-Shifting%20Shearography%20Using%20Spatiotemporal%20Low-Pass%20Filtering%20Algorithm&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yan,%20Peizheng&rft.date=2019-11-26&rft.volume=19&rft.issue=23&rft.spage=5185&rft.pages=5185-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19235185&rft_dat=%3Cproquest_pubme%3E2535563411%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-587d74479c4fd85c931dfa8a123cf81f9491e779b9dc913b9e1a796221564cba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535563411&rft_id=info:pmid/31779258&rfr_iscdi=true |