Loading…

Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS

Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox pro...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2020-01, Vol.29 (1), p.237-246
Main Authors: Laureanti, Joseph, Brandi, Juan, Offor, Elvis, Engel, David, Rallo, Robert, Ginovska, Bojana, Martinez, Xavier, Baaden, Marc, Baker, Nathan A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63
cites cdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63
container_end_page 246
container_issue 1
container_start_page 237
container_title Protein science
container_volume 29
creator Laureanti, Joseph
Brandi, Juan
Offor, Elvis
Engel, David
Rallo, Robert
Ginovska, Bojana
Martinez, Xavier
Baaden, Marc
Baker, Nathan A.
description Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.
doi_str_mv 10.1002/pro.3773
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6933841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314012964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</originalsourceid><addsrcrecordid>eNp1kUtuUzEUhi0EoqEgsQJ0BRMY3OL3Y4IUKqBIQamAImaW4ziNK8cOtm-qMGIJrJGV4JBSoBIjvz5_Ouf8ADxE8AhBiJ-vczoiQpBbYIQoV71U_PNtMIKKo14SLg_AvVIuIIQUYXIXHBAkEBRYjMD0ky-DCf6rj-fdzKdVCs4OweTOtU3NqVRTvS2dj93G59rYLrv2oW67S1-X3Vls23cp_Pj2fXz68sN9cGdhQnEPrtZDcPb61cfjk34yffP2eDzpLVWK9NRZwyzDaG6ZEIgJZOBCWDYnliIjKOFCGGkWnDAxt8Y5hQlSAhpBxAw7Tg7Bi713PcxWbm5drNkEvc5-ZfJWJ-P1vy_RL_V52miuCJEUNcHjvaB16HWxvjq7tCnG1rVuBTEhWYOe7aHlDffJeKJ3dxATARVjm53w6VVFOX0ZXKl65Yt1IZjo0lB0a4BChBWnDX1yA71IQ45tXo3CUlIuJf4jtC2Fkt3iugIE9S72dk56F3tDH_09jWvwd84N6PfApQ9u-1-RPn0__SX8CZc8twY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328846882</pqid></control><display><type>article</type><title>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</title><source>Wiley</source><source>PubMed Central</source><creator>Laureanti, Joseph ; Brandi, Juan ; Offor, Elvis ; Engel, David ; Rallo, Robert ; Ginovska, Bojana ; Martinez, Xavier ; Baaden, Marc ; Baker, Nathan A.</creator><creatorcontrib>Laureanti, Joseph ; Brandi, Juan ; Offor, Elvis ; Engel, David ; Rallo, Robert ; Ginovska, Bojana ; Martinez, Xavier ; Baaden, Marc ; Baker, Nathan A.</creatorcontrib><description>Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3773</identifier><identifier>PMID: 31710727</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Biochemistry, Molecular Biology ; Biophysics ; Computational Biology - methods ; Computer applications ; Computer programs ; Electrostatic properties ; Electrostatics ; Graphical user interface ; Imaging, Three-Dimensional ; Immersive virtual reality ; Life Sciences ; Line interfaces ; Masks ; molecular visualization ; Organic chemistry ; Protein Conformation ; Proteins ; Proteins - chemistry ; Software ; solvation ; Static Electricity ; Structural Biology ; Tools for Protein Science ; User-Computer Interface ; Virtual Reality ; Visualization ; Web Browser</subject><ispartof>Protein science, 2020-01, Vol.29 (1), p.237-246</ispartof><rights>2019 The Protein Society</rights><rights>2019 The Protein Society.</rights><rights>2020 The Protein Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</citedby><cites>FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</cites><orcidid>0000-0002-5892-6506 ; 0000-0003-2630-6393 ; 0000-0001-6472-0486 ; 0000000258926506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933841/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933841/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31710727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02370955$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1575785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Laureanti, Joseph</creatorcontrib><creatorcontrib>Brandi, Juan</creatorcontrib><creatorcontrib>Offor, Elvis</creatorcontrib><creatorcontrib>Engel, David</creatorcontrib><creatorcontrib>Rallo, Robert</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Martinez, Xavier</creatorcontrib><creatorcontrib>Baaden, Marc</creatorcontrib><creatorcontrib>Baker, Nathan A.</creatorcontrib><title>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.</description><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Graphical user interface</subject><subject>Imaging, Three-Dimensional</subject><subject>Immersive virtual reality</subject><subject>Life Sciences</subject><subject>Line interfaces</subject><subject>Masks</subject><subject>molecular visualization</subject><subject>Organic chemistry</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Software</subject><subject>solvation</subject><subject>Static Electricity</subject><subject>Structural Biology</subject><subject>Tools for Protein Science</subject><subject>User-Computer Interface</subject><subject>Virtual Reality</subject><subject>Visualization</subject><subject>Web Browser</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtuUzEUhi0EoqEgsQJ0BRMY3OL3Y4IUKqBIQamAImaW4ziNK8cOtm-qMGIJrJGV4JBSoBIjvz5_Ouf8ADxE8AhBiJ-vczoiQpBbYIQoV71U_PNtMIKKo14SLg_AvVIuIIQUYXIXHBAkEBRYjMD0ky-DCf6rj-fdzKdVCs4OweTOtU3NqVRTvS2dj93G59rYLrv2oW67S1-X3Vls23cp_Pj2fXz68sN9cGdhQnEPrtZDcPb61cfjk34yffP2eDzpLVWK9NRZwyzDaG6ZEIgJZOBCWDYnliIjKOFCGGkWnDAxt8Y5hQlSAhpBxAw7Tg7Bi713PcxWbm5drNkEvc5-ZfJWJ-P1vy_RL_V52miuCJEUNcHjvaB16HWxvjq7tCnG1rVuBTEhWYOe7aHlDffJeKJ3dxATARVjm53w6VVFOX0ZXKl65Yt1IZjo0lB0a4BChBWnDX1yA71IQ45tXo3CUlIuJf4jtC2Fkt3iugIE9S72dk56F3tDH_09jWvwd84N6PfApQ9u-1-RPn0__SX8CZc8twY</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Laureanti, Joseph</creator><creator>Brandi, Juan</creator><creator>Offor, Elvis</creator><creator>Engel, David</creator><creator>Rallo, Robert</creator><creator>Ginovska, Bojana</creator><creator>Martinez, Xavier</creator><creator>Baaden, Marc</creator><creator>Baker, Nathan A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5892-6506</orcidid><orcidid>https://orcid.org/0000-0003-2630-6393</orcidid><orcidid>https://orcid.org/0000-0001-6472-0486</orcidid><orcidid>https://orcid.org/0000000258926506</orcidid></search><sort><creationdate>202001</creationdate><title>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</title><author>Laureanti, Joseph ; Brandi, Juan ; Offor, Elvis ; Engel, David ; Rallo, Robert ; Ginovska, Bojana ; Martinez, Xavier ; Baaden, Marc ; Baker, Nathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Graphical user interface</topic><topic>Imaging, Three-Dimensional</topic><topic>Immersive virtual reality</topic><topic>Life Sciences</topic><topic>Line interfaces</topic><topic>Masks</topic><topic>molecular visualization</topic><topic>Organic chemistry</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Software</topic><topic>solvation</topic><topic>Static Electricity</topic><topic>Structural Biology</topic><topic>Tools for Protein Science</topic><topic>User-Computer Interface</topic><topic>Virtual Reality</topic><topic>Visualization</topic><topic>Web Browser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laureanti, Joseph</creatorcontrib><creatorcontrib>Brandi, Juan</creatorcontrib><creatorcontrib>Offor, Elvis</creatorcontrib><creatorcontrib>Engel, David</creatorcontrib><creatorcontrib>Rallo, Robert</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Martinez, Xavier</creatorcontrib><creatorcontrib>Baaden, Marc</creatorcontrib><creatorcontrib>Baker, Nathan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laureanti, Joseph</au><au>Brandi, Juan</au><au>Offor, Elvis</au><au>Engel, David</au><au>Rallo, Robert</au><au>Ginovska, Bojana</au><au>Martinez, Xavier</au><au>Baaden, Marc</au><au>Baker, Nathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2020-01</date><risdate>2020</risdate><volume>29</volume><issue>1</issue><spage>237</spage><epage>246</epage><pages>237-246</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31710727</pmid><doi>10.1002/pro.3773</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5892-6506</orcidid><orcidid>https://orcid.org/0000-0003-2630-6393</orcidid><orcidid>https://orcid.org/0000-0001-6472-0486</orcidid><orcidid>https://orcid.org/0000000258926506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2020-01, Vol.29 (1), p.237-246
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6933841
source Wiley; PubMed Central
subjects Animals
Biochemistry, Molecular Biology
Biophysics
Computational Biology - methods
Computer applications
Computer programs
Electrostatic properties
Electrostatics
Graphical user interface
Imaging, Three-Dimensional
Immersive virtual reality
Life Sciences
Line interfaces
Masks
molecular visualization
Organic chemistry
Protein Conformation
Proteins
Proteins - chemistry
Software
solvation
Static Electricity
Structural Biology
Tools for Protein Science
User-Computer Interface
Virtual Reality
Visualization
Web Browser
title Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20biomolecular%20electrostatics%20in%20virtual%20reality%20with%20UnityMol%E2%80%90APBS&rft.jtitle=Protein%20science&rft.au=Laureanti,%20Joseph&rft.date=2020-01&rft.volume=29&rft.issue=1&rft.spage=237&rft.epage=246&rft.pages=237-246&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3773&rft_dat=%3Cproquest_pubme%3E2314012964%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2328846882&rft_id=info:pmid/31710727&rfr_iscdi=true