Loading…
Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS
Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox pro...
Saved in:
Published in: | Protein science 2020-01, Vol.29 (1), p.237-246 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63 |
container_end_page | 246 |
container_issue | 1 |
container_start_page | 237 |
container_title | Protein science |
container_volume | 29 |
creator | Laureanti, Joseph Brandi, Juan Offor, Elvis Engel, David Rallo, Robert Ginovska, Bojana Martinez, Xavier Baaden, Marc Baker, Nathan A. |
description | Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience. |
doi_str_mv | 10.1002/pro.3773 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6933841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314012964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</originalsourceid><addsrcrecordid>eNp1kUtuUzEUhi0EoqEgsQJ0BRMY3OL3Y4IUKqBIQamAImaW4ziNK8cOtm-qMGIJrJGV4JBSoBIjvz5_Ouf8ADxE8AhBiJ-vczoiQpBbYIQoV71U_PNtMIKKo14SLg_AvVIuIIQUYXIXHBAkEBRYjMD0ky-DCf6rj-fdzKdVCs4OweTOtU3NqVRTvS2dj93G59rYLrv2oW67S1-X3Vls23cp_Pj2fXz68sN9cGdhQnEPrtZDcPb61cfjk34yffP2eDzpLVWK9NRZwyzDaG6ZEIgJZOBCWDYnliIjKOFCGGkWnDAxt8Y5hQlSAhpBxAw7Tg7Bi713PcxWbm5drNkEvc5-ZfJWJ-P1vy_RL_V52miuCJEUNcHjvaB16HWxvjq7tCnG1rVuBTEhWYOe7aHlDffJeKJ3dxATARVjm53w6VVFOX0ZXKl65Yt1IZjo0lB0a4BChBWnDX1yA71IQ45tXo3CUlIuJf4jtC2Fkt3iugIE9S72dk56F3tDH_09jWvwd84N6PfApQ9u-1-RPn0__SX8CZc8twY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328846882</pqid></control><display><type>article</type><title>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</title><source>Wiley</source><source>PubMed Central</source><creator>Laureanti, Joseph ; Brandi, Juan ; Offor, Elvis ; Engel, David ; Rallo, Robert ; Ginovska, Bojana ; Martinez, Xavier ; Baaden, Marc ; Baker, Nathan A.</creator><creatorcontrib>Laureanti, Joseph ; Brandi, Juan ; Offor, Elvis ; Engel, David ; Rallo, Robert ; Ginovska, Bojana ; Martinez, Xavier ; Baaden, Marc ; Baker, Nathan A.</creatorcontrib><description>Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3773</identifier><identifier>PMID: 31710727</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Biochemistry, Molecular Biology ; Biophysics ; Computational Biology - methods ; Computer applications ; Computer programs ; Electrostatic properties ; Electrostatics ; Graphical user interface ; Imaging, Three-Dimensional ; Immersive virtual reality ; Life Sciences ; Line interfaces ; Masks ; molecular visualization ; Organic chemistry ; Protein Conformation ; Proteins ; Proteins - chemistry ; Software ; solvation ; Static Electricity ; Structural Biology ; Tools for Protein Science ; User-Computer Interface ; Virtual Reality ; Visualization ; Web Browser</subject><ispartof>Protein science, 2020-01, Vol.29 (1), p.237-246</ispartof><rights>2019 The Protein Society</rights><rights>2019 The Protein Society.</rights><rights>2020 The Protein Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</citedby><cites>FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</cites><orcidid>0000-0002-5892-6506 ; 0000-0003-2630-6393 ; 0000-0001-6472-0486 ; 0000000258926506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933841/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933841/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31710727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02370955$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1575785$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Laureanti, Joseph</creatorcontrib><creatorcontrib>Brandi, Juan</creatorcontrib><creatorcontrib>Offor, Elvis</creatorcontrib><creatorcontrib>Engel, David</creatorcontrib><creatorcontrib>Rallo, Robert</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Martinez, Xavier</creatorcontrib><creatorcontrib>Baaden, Marc</creatorcontrib><creatorcontrib>Baker, Nathan A.</creatorcontrib><title>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.</description><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Graphical user interface</subject><subject>Imaging, Three-Dimensional</subject><subject>Immersive virtual reality</subject><subject>Life Sciences</subject><subject>Line interfaces</subject><subject>Masks</subject><subject>molecular visualization</subject><subject>Organic chemistry</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Software</subject><subject>solvation</subject><subject>Static Electricity</subject><subject>Structural Biology</subject><subject>Tools for Protein Science</subject><subject>User-Computer Interface</subject><subject>Virtual Reality</subject><subject>Visualization</subject><subject>Web Browser</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtuUzEUhi0EoqEgsQJ0BRMY3OL3Y4IUKqBIQamAImaW4ziNK8cOtm-qMGIJrJGV4JBSoBIjvz5_Ouf8ADxE8AhBiJ-vczoiQpBbYIQoV71U_PNtMIKKo14SLg_AvVIuIIQUYXIXHBAkEBRYjMD0ky-DCf6rj-fdzKdVCs4OweTOtU3NqVRTvS2dj93G59rYLrv2oW67S1-X3Vls23cp_Pj2fXz68sN9cGdhQnEPrtZDcPb61cfjk34yffP2eDzpLVWK9NRZwyzDaG6ZEIgJZOBCWDYnliIjKOFCGGkWnDAxt8Y5hQlSAhpBxAw7Tg7Bi713PcxWbm5drNkEvc5-ZfJWJ-P1vy_RL_V52miuCJEUNcHjvaB16HWxvjq7tCnG1rVuBTEhWYOe7aHlDffJeKJ3dxATARVjm53w6VVFOX0ZXKl65Yt1IZjo0lB0a4BChBWnDX1yA71IQ45tXo3CUlIuJf4jtC2Fkt3iugIE9S72dk56F3tDH_09jWvwd84N6PfApQ9u-1-RPn0__SX8CZc8twY</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Laureanti, Joseph</creator><creator>Brandi, Juan</creator><creator>Offor, Elvis</creator><creator>Engel, David</creator><creator>Rallo, Robert</creator><creator>Ginovska, Bojana</creator><creator>Martinez, Xavier</creator><creator>Baaden, Marc</creator><creator>Baker, Nathan A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5892-6506</orcidid><orcidid>https://orcid.org/0000-0003-2630-6393</orcidid><orcidid>https://orcid.org/0000-0001-6472-0486</orcidid><orcidid>https://orcid.org/0000000258926506</orcidid></search><sort><creationdate>202001</creationdate><title>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</title><author>Laureanti, Joseph ; Brandi, Juan ; Offor, Elvis ; Engel, David ; Rallo, Robert ; Ginovska, Bojana ; Martinez, Xavier ; Baaden, Marc ; Baker, Nathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Graphical user interface</topic><topic>Imaging, Three-Dimensional</topic><topic>Immersive virtual reality</topic><topic>Life Sciences</topic><topic>Line interfaces</topic><topic>Masks</topic><topic>molecular visualization</topic><topic>Organic chemistry</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Software</topic><topic>solvation</topic><topic>Static Electricity</topic><topic>Structural Biology</topic><topic>Tools for Protein Science</topic><topic>User-Computer Interface</topic><topic>Virtual Reality</topic><topic>Visualization</topic><topic>Web Browser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laureanti, Joseph</creatorcontrib><creatorcontrib>Brandi, Juan</creatorcontrib><creatorcontrib>Offor, Elvis</creatorcontrib><creatorcontrib>Engel, David</creatorcontrib><creatorcontrib>Rallo, Robert</creatorcontrib><creatorcontrib>Ginovska, Bojana</creatorcontrib><creatorcontrib>Martinez, Xavier</creatorcontrib><creatorcontrib>Baaden, Marc</creatorcontrib><creatorcontrib>Baker, Nathan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laureanti, Joseph</au><au>Brandi, Juan</au><au>Offor, Elvis</au><au>Engel, David</au><au>Rallo, Robert</au><au>Ginovska, Bojana</au><au>Martinez, Xavier</au><au>Baaden, Marc</au><au>Baker, Nathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2020-01</date><risdate>2020</risdate><volume>29</volume><issue>1</issue><spage>237</spage><epage>246</epage><pages>237-246</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Virtual reality is a powerful tool with the ability to immerse a user within a completely external environment. This immersion is particularly useful when visualizing and analyzing interactions between small organic molecules, molecular inorganic complexes, and biomolecular systems such as redox proteins and enzymes. A common tool used in the biomedical community to analyze such interactions is the Adaptive Poisson‐Boltzmann Solver (APBS) software, which was developed to solve the equations of continuum electrostatics for large biomolecular assemblages. Numerous applications exist for using APBS in the biomedical community including analysis of protein ligand interactions and APBS has enjoyed widespread adoption throughout the biomedical community. Currently, typical use of the full APBS toolset is completed via the command line followed by visualization using a variety of two‐dimensional external molecular visualization software. This process has inherent limitations: visualization of three‐dimensional objects using a two‐dimensional interface masks important information within the depth component. Herein, we have developed a single application, UnityMol‐APBS, that provides a dual experience where users can utilize the full range of the APBS toolset, without the use of a command line interface, by use of a simple graphical user interface (GUI) for either a standard desktop or immersive virtual reality experience.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31710727</pmid><doi>10.1002/pro.3773</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5892-6506</orcidid><orcidid>https://orcid.org/0000-0003-2630-6393</orcidid><orcidid>https://orcid.org/0000-0001-6472-0486</orcidid><orcidid>https://orcid.org/0000000258926506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2020-01, Vol.29 (1), p.237-246 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6933841 |
source | Wiley; PubMed Central |
subjects | Animals Biochemistry, Molecular Biology Biophysics Computational Biology - methods Computer applications Computer programs Electrostatic properties Electrostatics Graphical user interface Imaging, Three-Dimensional Immersive virtual reality Life Sciences Line interfaces Masks molecular visualization Organic chemistry Protein Conformation Proteins Proteins - chemistry Software solvation Static Electricity Structural Biology Tools for Protein Science User-Computer Interface Virtual Reality Visualization Web Browser |
title | Visualizing biomolecular electrostatics in virtual reality with UnityMol‐APBS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20biomolecular%20electrostatics%20in%20virtual%20reality%20with%20UnityMol%E2%80%90APBS&rft.jtitle=Protein%20science&rft.au=Laureanti,%20Joseph&rft.date=2020-01&rft.volume=29&rft.issue=1&rft.spage=237&rft.epage=246&rft.pages=237-246&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3773&rft_dat=%3Cproquest_pubme%3E2314012964%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4993-4eca5c521dc5771571a0f7c5d3c41a743677a8af6357dcaee9231970a737b2e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2328846882&rft_id=info:pmid/31710727&rfr_iscdi=true |