Loading…
Genetic and Biochemical Diversity for N-acylhomoserine Lactone Biosynthesis in the Plant Pathogen Pectobacterium carotovorum subsp. carotovorum
The plant pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) regulates the expression of virulence factors by N-acylhomoserine lactone (AHL)-mediated quorum sensing. The LuxI family protein, ExpI, catalyzes AHL biosynthesis in Pcc. The structure of the predominant AHL produced by ExpI diff...
Saved in:
Published in: | Microbes and Environments 2019, Vol.34(4), pp.429-435 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The plant pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) regulates the expression of virulence factors by N-acylhomoserine lactone (AHL)-mediated quorum sensing. The LuxI family protein, ExpI, catalyzes AHL biosynthesis in Pcc. The structure of the predominant AHL produced by ExpI differs among Pcc strains, which may be divided into two quorum-sensing classes (QS classes) based on the AHL produced. In the present study, AHL produced by 282 Pcc strains were extracted and identified by LC-MS/MS. Seventy Pcc strains produced N-(3-oxooctanoyl)- l -homoserine lactone (3-oxo-C8-HSL) as the predominant AHL and were categorized into QS class I. Two hundred Pcc strains produced N-(3-oxohexanoyl)- l -homoserine lactone (3-oxo-C6-HSL) as the predominant AHL, and were categorized into QS class II-1. Twelve Pcc strains produced only small amounts of 3-oxo-C6-HSL, and were categorized into QS class II-2. The phylogenetic analysis revealed that the amino acid sequences of ExpI may be divided into two major clades (I and II). The Pcc strains categorized into ExpI clades I and II entirely matched QS classes I and II, respectively. A multiple alignment analysis demonstrated that only 6 amino acid substitutions were observed among ExpI from QS classes II-1 and II-2. Furthermore, many amino acid substitutions between QS classes I and II were concentrated at the C-terminal region. These amino acid substitutions are assumed to cause significant reductions in 3-oxo-C6-HSL in QS class II-2 or affect the substrate specificity of ExpI between QS classes I and II. |
---|---|
ISSN: | 1342-6311 1347-4405 |
DOI: | 10.1264/jsme2.ME19105 |