Loading…

Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction

Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added doc...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-12, Vol.9 (1), p.19959-11, Article 19959
Main Authors: Moon, Myounghoon, Park, Won-Kun, Suh, William I., Chang, Yong Keun, Lee, Bongsoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833
cites cdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833
container_end_page 11
container_issue 1
container_start_page 19959
container_title Scientific reports
container_volume 9
creator Moon, Myounghoon
Park, Won-Kun
Suh, William I.
Chang, Yong Keun
Lee, Bongsoo
description Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using Aurantiochytrium sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L −1 . Increasing the nutrient level in the medium by supplementation of 9 g L −1 KH 2 PO 4 and 20 g L −1 yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L −1 , respectively) were achieved when 35 g L −1 sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using Aurantiochytrium sp. KRS101 and proper cultivation strategy.
doi_str_mv 10.1038/s41598-019-56406-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6934592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330969862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</originalsourceid><addsrcrecordid>eNp9kU9PFjEQxhujEYJ8AQ-miRcvC_23u60HE3xBIYGQiMZj03bbpWS3fW13CfDp6fIiogd7mWbmmd90-gDwFqM9jCjfzwzXglcIi6puGGqqmxdgmyBWV4QS8vLZfQvs5nyFyqmJYFi8BlsUc04EbrbB3Wcfh9h7owa4UknHAL9ZE69tuoUuxRFezL1KJed8WHI_Vb70oS9xsgn6MEV45k2KaugL4fD44CM8s52fR3i-nvzo79TkC1OFDl5MyeYMT0I3myX5Brxyash29zHugB9fjr6vjqvT868nq4PTyrCWTRWlWgnGHCatti1rdW0ahJ3WNdNMa0qV7rBlNVXMcswp47ZxRhhHOHcdp3QHfNpw17MebWdsmJIa5Dr5UaVbGZWXf1eCv5R9vJaNoKwWpAA-PAJS_DXbPMnRZ2OHQQUb5ywJpZgwQVpcpO__kV7FOYWy3qJCohG8WYBkoyofl3Oy7ukxGMnFXblxVxZ35YO78qY0vXu-xlPLby-LgG4EuZRCb9Of2f_B3gMnHbJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330969862</pqid></control><display><type>article</type><title>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Moon, Myounghoon ; Park, Won-Kun ; Suh, William I. ; Chang, Yong Keun ; Lee, Bongsoo</creator><creatorcontrib>Moon, Myounghoon ; Park, Won-Kun ; Suh, William I. ; Chang, Yong Keun ; Lee, Bongsoo</creatorcontrib><description>Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using Aurantiochytrium sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L −1 . Increasing the nutrient level in the medium by supplementation of 9 g L −1 KH 2 PO 4 and 20 g L −1 yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L −1 , respectively) were achieved when 35 g L −1 sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using Aurantiochytrium sp. KRS101 and proper cultivation strategy.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-56406-x</identifier><identifier>PMID: 31882916</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 631/326/2522 ; 631/61/168 ; 82/16 ; Algae ; Aquatic microorganisms ; Biomass ; Carbon ; Carbon - metabolism ; Carbon sources ; Contaminants ; Cultivation ; Culture Media - chemistry ; Docosahexaenoic acid ; Docosahexaenoic Acids - biosynthesis ; Docosahexaenoic Acids - metabolism ; Heterotrophic Processes ; Humanities and Social Sciences ; Lipids ; Microalgae ; Microalgae - metabolism ; multidisciplinary ; Nitrogen - metabolism ; Nutrient concentrations ; Organic carbon ; Osmotic stress ; Phosphorus ; Potassium phosphate ; Science ; Science (multidisciplinary) ; Stationary phase ; Stramenopiles - growth &amp; development ; Stramenopiles - metabolism ; Sugar ; Sugars - metabolism ; Total organic carbon ; Wastewater ; Wastewater - microbiology ; Yeasts</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.19959-11, Article 19959</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</citedby><cites>FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2330969862/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2330969862?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31882916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Myounghoon</creatorcontrib><creatorcontrib>Park, Won-Kun</creatorcontrib><creatorcontrib>Suh, William I.</creatorcontrib><creatorcontrib>Chang, Yong Keun</creatorcontrib><creatorcontrib>Lee, Bongsoo</creatorcontrib><title>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using Aurantiochytrium sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L −1 . Increasing the nutrient level in the medium by supplementation of 9 g L −1 KH 2 PO 4 and 20 g L −1 yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L −1 , respectively) were achieved when 35 g L −1 sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using Aurantiochytrium sp. KRS101 and proper cultivation strategy.</description><subject>14/63</subject><subject>631/326/2522</subject><subject>631/61/168</subject><subject>82/16</subject><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon sources</subject><subject>Contaminants</subject><subject>Cultivation</subject><subject>Culture Media - chemistry</subject><subject>Docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - biosynthesis</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Heterotrophic Processes</subject><subject>Humanities and Social Sciences</subject><subject>Lipids</subject><subject>Microalgae</subject><subject>Microalgae - metabolism</subject><subject>multidisciplinary</subject><subject>Nitrogen - metabolism</subject><subject>Nutrient concentrations</subject><subject>Organic carbon</subject><subject>Osmotic stress</subject><subject>Phosphorus</subject><subject>Potassium phosphate</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stationary phase</subject><subject>Stramenopiles - growth &amp; development</subject><subject>Stramenopiles - metabolism</subject><subject>Sugar</subject><subject>Sugars - metabolism</subject><subject>Total organic carbon</subject><subject>Wastewater</subject><subject>Wastewater - microbiology</subject><subject>Yeasts</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9PFjEQxhujEYJ8AQ-miRcvC_23u60HE3xBIYGQiMZj03bbpWS3fW13CfDp6fIiogd7mWbmmd90-gDwFqM9jCjfzwzXglcIi6puGGqqmxdgmyBWV4QS8vLZfQvs5nyFyqmJYFi8BlsUc04EbrbB3Wcfh9h7owa4UknHAL9ZE69tuoUuxRFezL1KJed8WHI_Vb70oS9xsgn6MEV45k2KaugL4fD44CM8s52fR3i-nvzo79TkC1OFDl5MyeYMT0I3myX5Brxyash29zHugB9fjr6vjqvT868nq4PTyrCWTRWlWgnGHCatti1rdW0ahJ3WNdNMa0qV7rBlNVXMcswp47ZxRhhHOHcdp3QHfNpw17MebWdsmJIa5Dr5UaVbGZWXf1eCv5R9vJaNoKwWpAA-PAJS_DXbPMnRZ2OHQQUb5ywJpZgwQVpcpO__kV7FOYWy3qJCohG8WYBkoyofl3Oy7ukxGMnFXblxVxZ35YO78qY0vXu-xlPLby-LgG4EuZRCb9Of2f_B3gMnHbJ8</recordid><startdate>20191227</startdate><enddate>20191227</enddate><creator>Moon, Myounghoon</creator><creator>Park, Won-Kun</creator><creator>Suh, William I.</creator><creator>Chang, Yong Keun</creator><creator>Lee, Bongsoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191227</creationdate><title>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</title><author>Moon, Myounghoon ; Park, Won-Kun ; Suh, William I. ; Chang, Yong Keun ; Lee, Bongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/63</topic><topic>631/326/2522</topic><topic>631/61/168</topic><topic>82/16</topic><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon sources</topic><topic>Contaminants</topic><topic>Cultivation</topic><topic>Culture Media - chemistry</topic><topic>Docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - biosynthesis</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Heterotrophic Processes</topic><topic>Humanities and Social Sciences</topic><topic>Lipids</topic><topic>Microalgae</topic><topic>Microalgae - metabolism</topic><topic>multidisciplinary</topic><topic>Nitrogen - metabolism</topic><topic>Nutrient concentrations</topic><topic>Organic carbon</topic><topic>Osmotic stress</topic><topic>Phosphorus</topic><topic>Potassium phosphate</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stationary phase</topic><topic>Stramenopiles - growth &amp; development</topic><topic>Stramenopiles - metabolism</topic><topic>Sugar</topic><topic>Sugars - metabolism</topic><topic>Total organic carbon</topic><topic>Wastewater</topic><topic>Wastewater - microbiology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Myounghoon</creatorcontrib><creatorcontrib>Park, Won-Kun</creatorcontrib><creatorcontrib>Suh, William I.</creatorcontrib><creatorcontrib>Chang, Yong Keun</creatorcontrib><creatorcontrib>Lee, Bongsoo</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Myounghoon</au><au>Park, Won-Kun</au><au>Suh, William I.</au><au>Chang, Yong Keun</au><au>Lee, Bongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-27</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>19959</spage><epage>11</epage><pages>19959-11</pages><artnum>19959</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using Aurantiochytrium sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L −1 . Increasing the nutrient level in the medium by supplementation of 9 g L −1 KH 2 PO 4 and 20 g L −1 yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L −1 , respectively) were achieved when 35 g L −1 sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using Aurantiochytrium sp. KRS101 and proper cultivation strategy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31882916</pmid><doi>10.1038/s41598-019-56406-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-12, Vol.9 (1), p.19959-11, Article 19959
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6934592
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/63
631/326/2522
631/61/168
82/16
Algae
Aquatic microorganisms
Biomass
Carbon
Carbon - metabolism
Carbon sources
Contaminants
Cultivation
Culture Media - chemistry
Docosahexaenoic acid
Docosahexaenoic Acids - biosynthesis
Docosahexaenoic Acids - metabolism
Heterotrophic Processes
Humanities and Social Sciences
Lipids
Microalgae
Microalgae - metabolism
multidisciplinary
Nitrogen - metabolism
Nutrient concentrations
Organic carbon
Osmotic stress
Phosphorus
Potassium phosphate
Science
Science (multidisciplinary)
Stationary phase
Stramenopiles - growth & development
Stramenopiles - metabolism
Sugar
Sugars - metabolism
Total organic carbon
Wastewater
Wastewater - microbiology
Yeasts
title Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20Carbon%20Recovery%20from%20Sugar%20Refinery%20Washing%20Water%20into%20Microalgal%20DHA:%20Medium%20Optimization%20and%20Stress%20Induction&rft.jtitle=Scientific%20reports&rft.au=Moon,%20Myounghoon&rft.date=2019-12-27&rft.volume=9&rft.issue=1&rft.spage=19959&rft.epage=11&rft.pages=19959-11&rft.artnum=19959&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-56406-x&rft_dat=%3Cproquest_pubme%3E2330969862%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330969862&rft_id=info:pmid/31882916&rfr_iscdi=true