Loading…
Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction
Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added doc...
Saved in:
Published in: | Scientific reports 2019-12, Vol.9 (1), p.19959-11, Article 19959 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 19959 |
container_title | Scientific reports |
container_volume | 9 |
creator | Moon, Myounghoon Park, Won-Kun Suh, William I. Chang, Yong Keun Lee, Bongsoo |
description | Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using
Aurantiochytrium
sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L
−1
. Increasing the nutrient level in the medium by supplementation of 9 g L
−1
KH
2
PO
4
and 20 g L
−1
yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L
−1
, respectively) were achieved when 35 g L
−1
sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using
Aurantiochytrium
sp. KRS101 and proper cultivation strategy. |
doi_str_mv | 10.1038/s41598-019-56406-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6934592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330969862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</originalsourceid><addsrcrecordid>eNp9kU9PFjEQxhujEYJ8AQ-miRcvC_23u60HE3xBIYGQiMZj03bbpWS3fW13CfDp6fIiogd7mWbmmd90-gDwFqM9jCjfzwzXglcIi6puGGqqmxdgmyBWV4QS8vLZfQvs5nyFyqmJYFi8BlsUc04EbrbB3Wcfh9h7owa4UknHAL9ZE69tuoUuxRFezL1KJed8WHI_Vb70oS9xsgn6MEV45k2KaugL4fD44CM8s52fR3i-nvzo79TkC1OFDl5MyeYMT0I3myX5Brxyash29zHugB9fjr6vjqvT868nq4PTyrCWTRWlWgnGHCatti1rdW0ahJ3WNdNMa0qV7rBlNVXMcswp47ZxRhhHOHcdp3QHfNpw17MebWdsmJIa5Dr5UaVbGZWXf1eCv5R9vJaNoKwWpAA-PAJS_DXbPMnRZ2OHQQUb5ywJpZgwQVpcpO__kV7FOYWy3qJCohG8WYBkoyofl3Oy7ukxGMnFXblxVxZ35YO78qY0vXu-xlPLby-LgG4EuZRCb9Of2f_B3gMnHbJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330969862</pqid></control><display><type>article</type><title>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Moon, Myounghoon ; Park, Won-Kun ; Suh, William I. ; Chang, Yong Keun ; Lee, Bongsoo</creator><creatorcontrib>Moon, Myounghoon ; Park, Won-Kun ; Suh, William I. ; Chang, Yong Keun ; Lee, Bongsoo</creatorcontrib><description>Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using
Aurantiochytrium
sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L
−1
. Increasing the nutrient level in the medium by supplementation of 9 g L
−1
KH
2
PO
4
and 20 g L
−1
yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L
−1
, respectively) were achieved when 35 g L
−1
sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using
Aurantiochytrium
sp. KRS101 and proper cultivation strategy.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-56406-x</identifier><identifier>PMID: 31882916</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 631/326/2522 ; 631/61/168 ; 82/16 ; Algae ; Aquatic microorganisms ; Biomass ; Carbon ; Carbon - metabolism ; Carbon sources ; Contaminants ; Cultivation ; Culture Media - chemistry ; Docosahexaenoic acid ; Docosahexaenoic Acids - biosynthesis ; Docosahexaenoic Acids - metabolism ; Heterotrophic Processes ; Humanities and Social Sciences ; Lipids ; Microalgae ; Microalgae - metabolism ; multidisciplinary ; Nitrogen - metabolism ; Nutrient concentrations ; Organic carbon ; Osmotic stress ; Phosphorus ; Potassium phosphate ; Science ; Science (multidisciplinary) ; Stationary phase ; Stramenopiles - growth & development ; Stramenopiles - metabolism ; Sugar ; Sugars - metabolism ; Total organic carbon ; Wastewater ; Wastewater - microbiology ; Yeasts</subject><ispartof>Scientific reports, 2019-12, Vol.9 (1), p.19959-11, Article 19959</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</citedby><cites>FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2330969862/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2330969862?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31882916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, Myounghoon</creatorcontrib><creatorcontrib>Park, Won-Kun</creatorcontrib><creatorcontrib>Suh, William I.</creatorcontrib><creatorcontrib>Chang, Yong Keun</creatorcontrib><creatorcontrib>Lee, Bongsoo</creatorcontrib><title>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using
Aurantiochytrium
sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L
−1
. Increasing the nutrient level in the medium by supplementation of 9 g L
−1
KH
2
PO
4
and 20 g L
−1
yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L
−1
, respectively) were achieved when 35 g L
−1
sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using
Aurantiochytrium
sp. KRS101 and proper cultivation strategy.</description><subject>14/63</subject><subject>631/326/2522</subject><subject>631/61/168</subject><subject>82/16</subject><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon sources</subject><subject>Contaminants</subject><subject>Cultivation</subject><subject>Culture Media - chemistry</subject><subject>Docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - biosynthesis</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Heterotrophic Processes</subject><subject>Humanities and Social Sciences</subject><subject>Lipids</subject><subject>Microalgae</subject><subject>Microalgae - metabolism</subject><subject>multidisciplinary</subject><subject>Nitrogen - metabolism</subject><subject>Nutrient concentrations</subject><subject>Organic carbon</subject><subject>Osmotic stress</subject><subject>Phosphorus</subject><subject>Potassium phosphate</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stationary phase</subject><subject>Stramenopiles - growth & development</subject><subject>Stramenopiles - metabolism</subject><subject>Sugar</subject><subject>Sugars - metabolism</subject><subject>Total organic carbon</subject><subject>Wastewater</subject><subject>Wastewater - microbiology</subject><subject>Yeasts</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9PFjEQxhujEYJ8AQ-miRcvC_23u60HE3xBIYGQiMZj03bbpWS3fW13CfDp6fIiogd7mWbmmd90-gDwFqM9jCjfzwzXglcIi6puGGqqmxdgmyBWV4QS8vLZfQvs5nyFyqmJYFi8BlsUc04EbrbB3Wcfh9h7owa4UknHAL9ZE69tuoUuxRFezL1KJed8WHI_Vb70oS9xsgn6MEV45k2KaugL4fD44CM8s52fR3i-nvzo79TkC1OFDl5MyeYMT0I3myX5Brxyash29zHugB9fjr6vjqvT868nq4PTyrCWTRWlWgnGHCatti1rdW0ahJ3WNdNMa0qV7rBlNVXMcswp47ZxRhhHOHcdp3QHfNpw17MebWdsmJIa5Dr5UaVbGZWXf1eCv5R9vJaNoKwWpAA-PAJS_DXbPMnRZ2OHQQUb5ywJpZgwQVpcpO__kV7FOYWy3qJCohG8WYBkoyofl3Oy7ukxGMnFXblxVxZ35YO78qY0vXu-xlPLby-LgG4EuZRCb9Of2f_B3gMnHbJ8</recordid><startdate>20191227</startdate><enddate>20191227</enddate><creator>Moon, Myounghoon</creator><creator>Park, Won-Kun</creator><creator>Suh, William I.</creator><creator>Chang, Yong Keun</creator><creator>Lee, Bongsoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191227</creationdate><title>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</title><author>Moon, Myounghoon ; Park, Won-Kun ; Suh, William I. ; Chang, Yong Keun ; Lee, Bongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/63</topic><topic>631/326/2522</topic><topic>631/61/168</topic><topic>82/16</topic><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon sources</topic><topic>Contaminants</topic><topic>Cultivation</topic><topic>Culture Media - chemistry</topic><topic>Docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - biosynthesis</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Heterotrophic Processes</topic><topic>Humanities and Social Sciences</topic><topic>Lipids</topic><topic>Microalgae</topic><topic>Microalgae - metabolism</topic><topic>multidisciplinary</topic><topic>Nitrogen - metabolism</topic><topic>Nutrient concentrations</topic><topic>Organic carbon</topic><topic>Osmotic stress</topic><topic>Phosphorus</topic><topic>Potassium phosphate</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stationary phase</topic><topic>Stramenopiles - growth & development</topic><topic>Stramenopiles - metabolism</topic><topic>Sugar</topic><topic>Sugars - metabolism</topic><topic>Total organic carbon</topic><topic>Wastewater</topic><topic>Wastewater - microbiology</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Myounghoon</creatorcontrib><creatorcontrib>Park, Won-Kun</creatorcontrib><creatorcontrib>Suh, William I.</creatorcontrib><creatorcontrib>Chang, Yong Keun</creatorcontrib><creatorcontrib>Lee, Bongsoo</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Myounghoon</au><au>Park, Won-Kun</au><au>Suh, William I.</au><au>Chang, Yong Keun</au><au>Lee, Bongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-12-27</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>19959</spage><epage>11</epage><pages>19959-11</pages><artnum>19959</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using
Aurantiochytrium
sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L
−1
. Increasing the nutrient level in the medium by supplementation of 9 g L
−1
KH
2
PO
4
and 20 g L
−1
yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L
−1
, respectively) were achieved when 35 g L
−1
sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using
Aurantiochytrium
sp. KRS101 and proper cultivation strategy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31882916</pmid><doi>10.1038/s41598-019-56406-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-12, Vol.9 (1), p.19959-11, Article 19959 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6934592 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14/63 631/326/2522 631/61/168 82/16 Algae Aquatic microorganisms Biomass Carbon Carbon - metabolism Carbon sources Contaminants Cultivation Culture Media - chemistry Docosahexaenoic acid Docosahexaenoic Acids - biosynthesis Docosahexaenoic Acids - metabolism Heterotrophic Processes Humanities and Social Sciences Lipids Microalgae Microalgae - metabolism multidisciplinary Nitrogen - metabolism Nutrient concentrations Organic carbon Osmotic stress Phosphorus Potassium phosphate Science Science (multidisciplinary) Stationary phase Stramenopiles - growth & development Stramenopiles - metabolism Sugar Sugars - metabolism Total organic carbon Wastewater Wastewater - microbiology Yeasts |
title | Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20Carbon%20Recovery%20from%20Sugar%20Refinery%20Washing%20Water%20into%20Microalgal%20DHA:%20Medium%20Optimization%20and%20Stress%20Induction&rft.jtitle=Scientific%20reports&rft.au=Moon,%20Myounghoon&rft.date=2019-12-27&rft.volume=9&rft.issue=1&rft.spage=19959&rft.epage=11&rft.pages=19959-11&rft.artnum=19959&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-56406-x&rft_dat=%3Cproquest_pubme%3E2330969862%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-33ba944f127be747b5c601fbb54b4bb33abd1e453a4e818348e6fc9cf288fd833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330969862&rft_id=info:pmid/31882916&rfr_iscdi=true |