Loading…

Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis

Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecali...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2019-12, Vol.116 (52), p.26925-26932
Main Authors: Khan, Ayesha, Davlieva, Milya, Panesso, Diana, Rincon, Sandra, Miller, William R., Diaz, Lorena, Reyes, Jinnethe, Cruz, Melissa R., Pemberton, Orville, Nguyen, April H., Siegel, Sara D., Planet, Paul J., Narechania, Apurva, Latorre, Mauricio, Rios, Rafael, Singh, Kavindra V., Ton-That, Hung, Garsin, Danielle A., Tran, Truc T., Shamoo, Yousif, Arias, Cesar A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-9066197ebde1c0fe5d11228f62b57460411805f34a074b7a916f353b1592becc3
cites cdi_FETCH-LOGICAL-c443t-9066197ebde1c0fe5d11228f62b57460411805f34a074b7a916f353b1592becc3
container_end_page 26932
container_issue 52
container_start_page 26925
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Khan, Ayesha
Davlieva, Milya
Panesso, Diana
Rincon, Sandra
Miller, William R.
Diaz, Lorena
Reyes, Jinnethe
Cruz, Melissa R.
Pemberton, Orville
Nguyen, April H.
Siegel, Sara D.
Planet, Paul J.
Narechania, Apurva
Latorre, Mauricio
Rios, Rafael
Singh, Kavindra V.
Ton-That, Hung
Garsin, Danielle A.
Tran, Truc T.
Shamoo, Yousif
Arias, Cesar A.
description Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host–pathogen interactions.
doi_str_mv 10.1073/pnas.1916037116
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897171</jstor_id><sourcerecordid>26897171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9066197ebde1c0fe5d11228f62b57460411805f34a074b7a916f353b1592becc3</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNa7nAMMzGpGlaNWniRteEYe60vMzAE5gal_7nZfLq82NF4P44OfccQl4DOwPWivN9sPkMOlBMtADqCdkA62CrZMeekg1jvN1qyeUJeZHzjjHWNZo9JycCNOhOtBvy6yIUP3uXYu_tRDOG7MMtdXHZTzjQH77cUYfTRGec-2QD0oRzHHBaqRkHbwtmaqtI72Pxro6zz8UGh_V1oPc-LROuNx_oVSiYoovOLZmOFp2dfH5Jno12yvjq8Twl366vvl5-2t58-fj58uJm66QUZdsxpaBrsR8QHBuxGQA416PifdNKxSSAZs0opGWt7FtbMxlFI3poOt6jc-KUfDjo7pe-GncYSrKT2Sc_2_TTROvNv5Pg78xtvDeqEzVPWQXePwqk-H3BXMzs85pNTSUu2XDBhdTVCKvou__QXVxSqOtVSgAHobWq1PmBqunnnHA8mgFm1nrNWq_5U2_98fbvHY787z4r8OYA7HKJ6TjnSncttCAeAJkiras</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331213886</pqid></control><display><type>article</type><title>Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis</title><source>PubMed Central(OpenAccess)</source><source>JSTOR Archival Journals</source><creator>Khan, Ayesha ; Davlieva, Milya ; Panesso, Diana ; Rincon, Sandra ; Miller, William R. ; Diaz, Lorena ; Reyes, Jinnethe ; Cruz, Melissa R. ; Pemberton, Orville ; Nguyen, April H. ; Siegel, Sara D. ; Planet, Paul J. ; Narechania, Apurva ; Latorre, Mauricio ; Rios, Rafael ; Singh, Kavindra V. ; Ton-That, Hung ; Garsin, Danielle A. ; Tran, Truc T. ; Shamoo, Yousif ; Arias, Cesar A.</creator><creatorcontrib>Khan, Ayesha ; Davlieva, Milya ; Panesso, Diana ; Rincon, Sandra ; Miller, William R. ; Diaz, Lorena ; Reyes, Jinnethe ; Cruz, Melissa R. ; Pemberton, Orville ; Nguyen, April H. ; Siegel, Sara D. ; Planet, Paul J. ; Narechania, Apurva ; Latorre, Mauricio ; Rios, Rafael ; Singh, Kavindra V. ; Ton-That, Hung ; Garsin, Danielle A. ; Tran, Truc T. ; Shamoo, Yousif ; Arias, Cesar A.</creatorcontrib><description>Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host–pathogen interactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1916037116</identifier><identifier>PMID: 31818937</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial peptides ; Biological Sciences ; Cell membranes ; Cellular stress response ; Daptomycin ; Enterococcus faecalis ; Immune system ; Innate immunity ; Localization ; Membranes ; Multidrug resistance ; Opportunist infection ; Pathogens ; Peptides ; Phospholipids ; Strains (organisms) ; Stress response ; Virulence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.26925-26932</ispartof><rights>Copyright National Academy of Sciences Dec 26, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9066197ebde1c0fe5d11228f62b57460411805f34a074b7a916f353b1592becc3</citedby><cites>FETCH-LOGICAL-c443t-9066197ebde1c0fe5d11228f62b57460411805f34a074b7a916f353b1592becc3</cites><orcidid>0000-0002-0489-0712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897171$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897171$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31818937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Ayesha</creatorcontrib><creatorcontrib>Davlieva, Milya</creatorcontrib><creatorcontrib>Panesso, Diana</creatorcontrib><creatorcontrib>Rincon, Sandra</creatorcontrib><creatorcontrib>Miller, William R.</creatorcontrib><creatorcontrib>Diaz, Lorena</creatorcontrib><creatorcontrib>Reyes, Jinnethe</creatorcontrib><creatorcontrib>Cruz, Melissa R.</creatorcontrib><creatorcontrib>Pemberton, Orville</creatorcontrib><creatorcontrib>Nguyen, April H.</creatorcontrib><creatorcontrib>Siegel, Sara D.</creatorcontrib><creatorcontrib>Planet, Paul J.</creatorcontrib><creatorcontrib>Narechania, Apurva</creatorcontrib><creatorcontrib>Latorre, Mauricio</creatorcontrib><creatorcontrib>Rios, Rafael</creatorcontrib><creatorcontrib>Singh, Kavindra V.</creatorcontrib><creatorcontrib>Ton-That, Hung</creatorcontrib><creatorcontrib>Garsin, Danielle A.</creatorcontrib><creatorcontrib>Tran, Truc T.</creatorcontrib><creatorcontrib>Shamoo, Yousif</creatorcontrib><creatorcontrib>Arias, Cesar A.</creatorcontrib><title>Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host–pathogen interactions.</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial peptides</subject><subject>Biological Sciences</subject><subject>Cell membranes</subject><subject>Cellular stress response</subject><subject>Daptomycin</subject><subject>Enterococcus faecalis</subject><subject>Immune system</subject><subject>Innate immunity</subject><subject>Localization</subject><subject>Membranes</subject><subject>Multidrug resistance</subject><subject>Opportunist infection</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Phospholipids</subject><subject>Strains (organisms)</subject><subject>Stress response</subject><subject>Virulence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNa7nAMMzGpGlaNWniRteEYe60vMzAE5gal_7nZfLq82NF4P44OfccQl4DOwPWivN9sPkMOlBMtADqCdkA62CrZMeekg1jvN1qyeUJeZHzjjHWNZo9JycCNOhOtBvy6yIUP3uXYu_tRDOG7MMtdXHZTzjQH77cUYfTRGec-2QD0oRzHHBaqRkHbwtmaqtI72Pxro6zz8UGh_V1oPc-LROuNx_oVSiYoovOLZmOFp2dfH5Jno12yvjq8Twl366vvl5-2t58-fj58uJm66QUZdsxpaBrsR8QHBuxGQA416PifdNKxSSAZs0opGWt7FtbMxlFI3poOt6jc-KUfDjo7pe-GncYSrKT2Sc_2_TTROvNv5Pg78xtvDeqEzVPWQXePwqk-H3BXMzs85pNTSUu2XDBhdTVCKvou__QXVxSqOtVSgAHobWq1PmBqunnnHA8mgFm1nrNWq_5U2_98fbvHY787z4r8OYA7HKJ6TjnSncttCAeAJkiras</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Khan, Ayesha</creator><creator>Davlieva, Milya</creator><creator>Panesso, Diana</creator><creator>Rincon, Sandra</creator><creator>Miller, William R.</creator><creator>Diaz, Lorena</creator><creator>Reyes, Jinnethe</creator><creator>Cruz, Melissa R.</creator><creator>Pemberton, Orville</creator><creator>Nguyen, April H.</creator><creator>Siegel, Sara D.</creator><creator>Planet, Paul J.</creator><creator>Narechania, Apurva</creator><creator>Latorre, Mauricio</creator><creator>Rios, Rafael</creator><creator>Singh, Kavindra V.</creator><creator>Ton-That, Hung</creator><creator>Garsin, Danielle A.</creator><creator>Tran, Truc T.</creator><creator>Shamoo, Yousif</creator><creator>Arias, Cesar A.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0489-0712</orcidid></search><sort><creationdate>20191226</creationdate><title>Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis</title><author>Khan, Ayesha ; Davlieva, Milya ; Panesso, Diana ; Rincon, Sandra ; Miller, William R. ; Diaz, Lorena ; Reyes, Jinnethe ; Cruz, Melissa R. ; Pemberton, Orville ; Nguyen, April H. ; Siegel, Sara D. ; Planet, Paul J. ; Narechania, Apurva ; Latorre, Mauricio ; Rios, Rafael ; Singh, Kavindra V. ; Ton-That, Hung ; Garsin, Danielle A. ; Tran, Truc T. ; Shamoo, Yousif ; Arias, Cesar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9066197ebde1c0fe5d11228f62b57460411805f34a074b7a916f353b1592becc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial peptides</topic><topic>Biological Sciences</topic><topic>Cell membranes</topic><topic>Cellular stress response</topic><topic>Daptomycin</topic><topic>Enterococcus faecalis</topic><topic>Immune system</topic><topic>Innate immunity</topic><topic>Localization</topic><topic>Membranes</topic><topic>Multidrug resistance</topic><topic>Opportunist infection</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Phospholipids</topic><topic>Strains (organisms)</topic><topic>Stress response</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Ayesha</creatorcontrib><creatorcontrib>Davlieva, Milya</creatorcontrib><creatorcontrib>Panesso, Diana</creatorcontrib><creatorcontrib>Rincon, Sandra</creatorcontrib><creatorcontrib>Miller, William R.</creatorcontrib><creatorcontrib>Diaz, Lorena</creatorcontrib><creatorcontrib>Reyes, Jinnethe</creatorcontrib><creatorcontrib>Cruz, Melissa R.</creatorcontrib><creatorcontrib>Pemberton, Orville</creatorcontrib><creatorcontrib>Nguyen, April H.</creatorcontrib><creatorcontrib>Siegel, Sara D.</creatorcontrib><creatorcontrib>Planet, Paul J.</creatorcontrib><creatorcontrib>Narechania, Apurva</creatorcontrib><creatorcontrib>Latorre, Mauricio</creatorcontrib><creatorcontrib>Rios, Rafael</creatorcontrib><creatorcontrib>Singh, Kavindra V.</creatorcontrib><creatorcontrib>Ton-That, Hung</creatorcontrib><creatorcontrib>Garsin, Danielle A.</creatorcontrib><creatorcontrib>Tran, Truc T.</creatorcontrib><creatorcontrib>Shamoo, Yousif</creatorcontrib><creatorcontrib>Arias, Cesar A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Ayesha</au><au>Davlieva, Milya</au><au>Panesso, Diana</au><au>Rincon, Sandra</au><au>Miller, William R.</au><au>Diaz, Lorena</au><au>Reyes, Jinnethe</au><au>Cruz, Melissa R.</au><au>Pemberton, Orville</au><au>Nguyen, April H.</au><au>Siegel, Sara D.</au><au>Planet, Paul J.</au><au>Narechania, Apurva</au><au>Latorre, Mauricio</au><au>Rios, Rafael</au><au>Singh, Kavindra V.</au><au>Ton-That, Hung</au><au>Garsin, Danielle A.</au><au>Tran, Truc T.</au><au>Shamoo, Yousif</au><au>Arias, Cesar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>116</volume><issue>52</issue><spage>26925</spage><epage>26932</epage><pages>26925-26932</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host–pathogen interactions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31818937</pmid><doi>10.1073/pnas.1916037116</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0489-0712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-12, Vol.116 (52), p.26925-26932
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936494
source PubMed Central(OpenAccess); JSTOR Archival Journals
subjects Antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
Antimicrobial peptides
Biological Sciences
Cell membranes
Cellular stress response
Daptomycin
Enterococcus faecalis
Immune system
Innate immunity
Localization
Membranes
Multidrug resistance
Opportunist infection
Pathogens
Peptides
Phospholipids
Strains (organisms)
Stress response
Virulence
title Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20sensing%20coupled%20with%20cell%20membrane%20remodeling%20mediates%20antibiotic%20resistance%20and%20virulence%20in%20Enterococcus%20faecalis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Khan,%20Ayesha&rft.date=2019-12-26&rft.volume=116&rft.issue=52&rft.spage=26925&rft.epage=26932&rft.pages=26925-26932&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1916037116&rft_dat=%3Cjstor_pubme%3E26897171%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-9066197ebde1c0fe5d11228f62b57460411805f34a074b7a916f353b1592becc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331213886&rft_id=info:pmid/31818937&rft_jstor_id=26897171&rfr_iscdi=true