Loading…
Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation
Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in , , or Disease onset is earlier and more severe in individuals with mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase...
Saved in:
Published in: | Science translational medicine 2019-11, Vol.11 (520) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in
,
, or
Disease onset is earlier and more severe in individuals with
mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with
mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of
, but not
, in gut epithelial cells. Loss of gut epithelial
results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of
in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling. |
---|---|
ISSN: | 1946-6234 1946-6242 1946-3242 |
DOI: | 10.1126/scitranslmed.aaw3521 |