Loading…

Wound healing coordinates actin architectures to regulate mechanical work

How cells with diverse morphologies and cytoskeletal architectures modulate their mechanical behaviours to drive robust collective motion within tissues is poorly understood. During wound repair within epithelial monolayers in vitro, cells coordinate the assembly of branched and bundled actin networ...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2019, Vol.15 (7), p.696-705
Main Authors: Ajeti, Visar, Tabatabai, A. Pasha, Fleszar, Andrew J., Staddon, Michael F., Seara, Daniel S., Suarez, Cristian, Yousafzai, M. Sulaiman, Bi, Dapeng, Kovar, David R., Banerjee, Shiladitya, Murrell, Michael P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-b524f472364fdd55cc92a97e7ccc2d8cebf13ed5a4f259323c0509913e93fb1d3
cites cdi_FETCH-LOGICAL-c518t-b524f472364fdd55cc92a97e7ccc2d8cebf13ed5a4f259323c0509913e93fb1d3
container_end_page 705
container_issue 7
container_start_page 696
container_title Nature physics
container_volume 15
creator Ajeti, Visar
Tabatabai, A. Pasha
Fleszar, Andrew J.
Staddon, Michael F.
Seara, Daniel S.
Suarez, Cristian
Yousafzai, M. Sulaiman
Bi, Dapeng
Kovar, David R.
Banerjee, Shiladitya
Murrell, Michael P.
description How cells with diverse morphologies and cytoskeletal architectures modulate their mechanical behaviours to drive robust collective motion within tissues is poorly understood. During wound repair within epithelial monolayers in vitro, cells coordinate the assembly of branched and bundled actin networks to regulate the total mechanical work produced by collective cell motion. Using traction force microscopy, we show that the balance of actin network architectures optimizes the wound closure rate and the magnitude of the mechanical work. These values are constrained by the effective power exerted by the monolayer, which is conserved and independent of actin architectures. Using a cell-based physical model, we show that the rate at which mechanical work is done by the monolayer is limited by the transformation between actin network architectures and differential regulation of cell–substrate friction. These results and our proposed mechanisms provide a robust physical model for how cells collectively coordinate their non-equilibrium behaviours to dynamically regulate tissue-scale mechanical output. When a wound heals, different types of branched and bundled actin structure form, each designed to perform a specific function. Experiments and theory now suggest that the actin architecture depends on the stiffness of the cell’s surroundings.
doi_str_mv 10.1038/s41567-019-0485-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250582059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b524f472364fdd55cc92a97e7ccc2d8cebf13ed5a4f259323c0509913e93fb1d3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWqs_wIssePGyms_dzUWQ4hcIXhSPIZ3NtqnbpCa7iv_elNb6AZ5mmHnmnRlehI4IPiOYVeeRE1GUOSYyx7wSudxCA1JykVNeke1NXrI9tB_jDGNOC8J20R4jlSxxJQbo7tn3rs6mRrfWTTLwPtTW6c7ETENnXaYDTG1noOtDqnU-C2bStwnI5gam2lnQbfbuw8sB2ml0G83hOg7R0_XV4-g2v3-4uRtd3ucgSNXlY0F5w0vKCt7UtRAAkmpZmhIAaF2BGTeEmVpo3lAhGWWABZYy1SRrxqRmQ3Sx0l3047mpwbgu6FYtgp3r8KG8tup3x9mpmvg3VUgmpSyTwOlaIPjX3sROzW0E07baGd9HRRljBWYYFwk9-YPOfB9cek9RKrCoKE43DhFZURB8jME0m2MIVkuj1MoolYxSS6PUcub45xebiS9nEkBXQEwtNzHhe_X_qp9cY5-a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250582059</pqid></control><display><type>article</type><title>Wound healing coordinates actin architectures to regulate mechanical work</title><source>Nature_系列刊</source><creator>Ajeti, Visar ; Tabatabai, A. Pasha ; Fleszar, Andrew J. ; Staddon, Michael F. ; Seara, Daniel S. ; Suarez, Cristian ; Yousafzai, M. Sulaiman ; Bi, Dapeng ; Kovar, David R. ; Banerjee, Shiladitya ; Murrell, Michael P.</creator><creatorcontrib>Ajeti, Visar ; Tabatabai, A. Pasha ; Fleszar, Andrew J. ; Staddon, Michael F. ; Seara, Daniel S. ; Suarez, Cristian ; Yousafzai, M. Sulaiman ; Bi, Dapeng ; Kovar, David R. ; Banerjee, Shiladitya ; Murrell, Michael P.</creatorcontrib><description>How cells with diverse morphologies and cytoskeletal architectures modulate their mechanical behaviours to drive robust collective motion within tissues is poorly understood. During wound repair within epithelial monolayers in vitro, cells coordinate the assembly of branched and bundled actin networks to regulate the total mechanical work produced by collective cell motion. Using traction force microscopy, we show that the balance of actin network architectures optimizes the wound closure rate and the magnitude of the mechanical work. These values are constrained by the effective power exerted by the monolayer, which is conserved and independent of actin architectures. Using a cell-based physical model, we show that the rate at which mechanical work is done by the monolayer is limited by the transformation between actin network architectures and differential regulation of cell–substrate friction. These results and our proposed mechanisms provide a robust physical model for how cells collectively coordinate their non-equilibrium behaviours to dynamically regulate tissue-scale mechanical output. When a wound heals, different types of branched and bundled actin structure form, each designed to perform a specific function. Experiments and theory now suggest that the actin architecture depends on the stiffness of the cell’s surroundings.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0485-9</identifier><identifier>PMID: 31897085</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 639/766/747 ; Ablation ; Adhesion ; Atomic ; Biomedical engineering ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cooperation ; Mathematical and Computational Physics ; Molecular ; Monolayers ; Morphology ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Substrates ; Theoretical ; Traction force ; Viscoelasticity ; Viscosity ; Wound healing</subject><ispartof>Nature physics, 2019, Vol.15 (7), p.696-705</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b524f472364fdd55cc92a97e7ccc2d8cebf13ed5a4f259323c0509913e93fb1d3</citedby><cites>FETCH-LOGICAL-c518t-b524f472364fdd55cc92a97e7ccc2d8cebf13ed5a4f259323c0509913e93fb1d3</cites><orcidid>0000-0001-5615-2888 ; 0000-0001-8000-2556 ; 0000-0001-6788-2077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31897085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ajeti, Visar</creatorcontrib><creatorcontrib>Tabatabai, A. Pasha</creatorcontrib><creatorcontrib>Fleszar, Andrew J.</creatorcontrib><creatorcontrib>Staddon, Michael F.</creatorcontrib><creatorcontrib>Seara, Daniel S.</creatorcontrib><creatorcontrib>Suarez, Cristian</creatorcontrib><creatorcontrib>Yousafzai, M. Sulaiman</creatorcontrib><creatorcontrib>Bi, Dapeng</creatorcontrib><creatorcontrib>Kovar, David R.</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Murrell, Michael P.</creatorcontrib><title>Wound healing coordinates actin architectures to regulate mechanical work</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>How cells with diverse morphologies and cytoskeletal architectures modulate their mechanical behaviours to drive robust collective motion within tissues is poorly understood. During wound repair within epithelial monolayers in vitro, cells coordinate the assembly of branched and bundled actin networks to regulate the total mechanical work produced by collective cell motion. Using traction force microscopy, we show that the balance of actin network architectures optimizes the wound closure rate and the magnitude of the mechanical work. These values are constrained by the effective power exerted by the monolayer, which is conserved and independent of actin architectures. Using a cell-based physical model, we show that the rate at which mechanical work is done by the monolayer is limited by the transformation between actin network architectures and differential regulation of cell–substrate friction. These results and our proposed mechanisms provide a robust physical model for how cells collectively coordinate their non-equilibrium behaviours to dynamically regulate tissue-scale mechanical output. When a wound heals, different types of branched and bundled actin structure form, each designed to perform a specific function. Experiments and theory now suggest that the actin architecture depends on the stiffness of the cell’s surroundings.</description><subject>631/57</subject><subject>639/766/747</subject><subject>Ablation</subject><subject>Adhesion</subject><subject>Atomic</subject><subject>Biomedical engineering</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooperation</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Monolayers</subject><subject>Morphology</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Substrates</subject><subject>Theoretical</subject><subject>Traction force</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Wound healing</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMoWqs_wIssePGyms_dzUWQ4hcIXhSPIZ3NtqnbpCa7iv_elNb6AZ5mmHnmnRlehI4IPiOYVeeRE1GUOSYyx7wSudxCA1JykVNeke1NXrI9tB_jDGNOC8J20R4jlSxxJQbo7tn3rs6mRrfWTTLwPtTW6c7ETENnXaYDTG1noOtDqnU-C2bStwnI5gam2lnQbfbuw8sB2ml0G83hOg7R0_XV4-g2v3-4uRtd3ucgSNXlY0F5w0vKCt7UtRAAkmpZmhIAaF2BGTeEmVpo3lAhGWWABZYy1SRrxqRmQ3Sx0l3047mpwbgu6FYtgp3r8KG8tup3x9mpmvg3VUgmpSyTwOlaIPjX3sROzW0E07baGd9HRRljBWYYFwk9-YPOfB9cek9RKrCoKE43DhFZURB8jME0m2MIVkuj1MoolYxSS6PUcub45xebiS9nEkBXQEwtNzHhe_X_qp9cY5-a</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ajeti, Visar</creator><creator>Tabatabai, A. Pasha</creator><creator>Fleszar, Andrew J.</creator><creator>Staddon, Michael F.</creator><creator>Seara, Daniel S.</creator><creator>Suarez, Cristian</creator><creator>Yousafzai, M. Sulaiman</creator><creator>Bi, Dapeng</creator><creator>Kovar, David R.</creator><creator>Banerjee, Shiladitya</creator><creator>Murrell, Michael P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5615-2888</orcidid><orcidid>https://orcid.org/0000-0001-8000-2556</orcidid><orcidid>https://orcid.org/0000-0001-6788-2077</orcidid></search><sort><creationdate>2019</creationdate><title>Wound healing coordinates actin architectures to regulate mechanical work</title><author>Ajeti, Visar ; Tabatabai, A. Pasha ; Fleszar, Andrew J. ; Staddon, Michael F. ; Seara, Daniel S. ; Suarez, Cristian ; Yousafzai, M. Sulaiman ; Bi, Dapeng ; Kovar, David R. ; Banerjee, Shiladitya ; Murrell, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b524f472364fdd55cc92a97e7ccc2d8cebf13ed5a4f259323c0509913e93fb1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/57</topic><topic>639/766/747</topic><topic>Ablation</topic><topic>Adhesion</topic><topic>Atomic</topic><topic>Biomedical engineering</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooperation</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Monolayers</topic><topic>Morphology</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Substrates</topic><topic>Theoretical</topic><topic>Traction force</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajeti, Visar</creatorcontrib><creatorcontrib>Tabatabai, A. Pasha</creatorcontrib><creatorcontrib>Fleszar, Andrew J.</creatorcontrib><creatorcontrib>Staddon, Michael F.</creatorcontrib><creatorcontrib>Seara, Daniel S.</creatorcontrib><creatorcontrib>Suarez, Cristian</creatorcontrib><creatorcontrib>Yousafzai, M. Sulaiman</creatorcontrib><creatorcontrib>Bi, Dapeng</creatorcontrib><creatorcontrib>Kovar, David R.</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Murrell, Michael P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajeti, Visar</au><au>Tabatabai, A. Pasha</au><au>Fleszar, Andrew J.</au><au>Staddon, Michael F.</au><au>Seara, Daniel S.</au><au>Suarez, Cristian</au><au>Yousafzai, M. Sulaiman</au><au>Bi, Dapeng</au><au>Kovar, David R.</au><au>Banerjee, Shiladitya</au><au>Murrell, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wound healing coordinates actin architectures to regulate mechanical work</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2019</date><risdate>2019</risdate><volume>15</volume><issue>7</issue><spage>696</spage><epage>705</epage><pages>696-705</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>How cells with diverse morphologies and cytoskeletal architectures modulate their mechanical behaviours to drive robust collective motion within tissues is poorly understood. During wound repair within epithelial monolayers in vitro, cells coordinate the assembly of branched and bundled actin networks to regulate the total mechanical work produced by collective cell motion. Using traction force microscopy, we show that the balance of actin network architectures optimizes the wound closure rate and the magnitude of the mechanical work. These values are constrained by the effective power exerted by the monolayer, which is conserved and independent of actin architectures. Using a cell-based physical model, we show that the rate at which mechanical work is done by the monolayer is limited by the transformation between actin network architectures and differential regulation of cell–substrate friction. These results and our proposed mechanisms provide a robust physical model for how cells collectively coordinate their non-equilibrium behaviours to dynamically regulate tissue-scale mechanical output. When a wound heals, different types of branched and bundled actin structure form, each designed to perform a specific function. Experiments and theory now suggest that the actin architecture depends on the stiffness of the cell’s surroundings.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31897085</pmid><doi>10.1038/s41567-019-0485-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5615-2888</orcidid><orcidid>https://orcid.org/0000-0001-8000-2556</orcidid><orcidid>https://orcid.org/0000-0001-6788-2077</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2019, Vol.15 (7), p.696-705
issn 1745-2473
1745-2481
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6939997
source Nature_系列刊
subjects 631/57
639/766/747
Ablation
Adhesion
Atomic
Biomedical engineering
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Cooperation
Mathematical and Computational Physics
Molecular
Monolayers
Morphology
Optical and Plasma Physics
Physics
Physics and Astronomy
Substrates
Theoretical
Traction force
Viscoelasticity
Viscosity
Wound healing
title Wound healing coordinates actin architectures to regulate mechanical work
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wound%20healing%20coordinates%20actin%20architectures%20to%20regulate%20mechanical%20work&rft.jtitle=Nature%20physics&rft.au=Ajeti,%20Visar&rft.date=2019&rft.volume=15&rft.issue=7&rft.spage=696&rft.epage=705&rft.pages=696-705&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0485-9&rft_dat=%3Cproquest_pubme%3E2250582059%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b524f472364fdd55cc92a97e7ccc2d8cebf13ed5a4f259323c0509913e93fb1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250582059&rft_id=info:pmid/31897085&rfr_iscdi=true