Loading…

Structure-Based Redesign of a Self-Sufficient Flavin-Containing Monooxygenase towards Indigo Production

Indigo is currently produced by a century-old petrochemical-based process, therefore it is highly attractive to develop a more environmentally benign and efficient biotechnological process to produce this timeless dye. Flavin-containing monooxygenases (FMOs) are able to oxidize a wide variety of sub...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2019-12, Vol.20 (24), p.6148
Main Authors: Lončar, Nikola, van Beek, Hugo L, Fraaije, Marco W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Indigo is currently produced by a century-old petrochemical-based process, therefore it is highly attractive to develop a more environmentally benign and efficient biotechnological process to produce this timeless dye. Flavin-containing monooxygenases (FMOs) are able to oxidize a wide variety of substrates. In this paper we show that the bacterial mFMO can be adapted to improve its ability to convert indole into indigo. The improvement was achieved by a combination of computational and structure-inspired enzyme redesign. We showed that the thermostability and the for indole could be improved 1.5-fold by screening a relatively small number of enzyme mutants. This project not only resulted in an improved biocatalyst but also provided an improved understanding of the structural elements that determine the activity of mFMO and provides hints for further improvement of the monooxygenase as biocatalyst.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20246148