Loading…
Determination of Chemical Stability of Two Oral Antidiabetics, Metformin and Repaglinide in the Solid State and Solutions Using LC-UV, LC-MS, and FT-IR Methods
Firstly, metformin and repaglinide were degraded under high temperature/humidity, UV/VIS light, in different pH and oxidative conditions. Secondly, a new validated LC-UV method was examined, as to whether it validly determined these drugs in the presence of their degradation products and whether it...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2019-12, Vol.24 (24), p.4430 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Firstly, metformin and repaglinide were degraded under high temperature/humidity, UV/VIS light, in different pH and oxidative conditions. Secondly, a new validated LC-UV method was examined, as to whether it validly determined these drugs in the presence of their degradation products and whether it is suitable for estimating degradation kinetics. Finally, the respective LC-MS method was used to identify the degradation products. In addition, using FT-IR method, the stability of metformin and repaglinide was scrutinized in the presence of polyvinylpyrrolidone (PVP), mannitol, magnesium stearate, and lactose. Significant degradation of metformin, following the first order kinetics, was observed in alkaline medium. In the case of repaglinide, the most significant and quickest degradation, following the first order kinetics, was observed in acidic and oxidative media (0.1 M HCl and 3% H
O
). Two new degradation products of metformin and nine new degradation products of repaglinide were detected and identified when the stressed samples were examined by our LC-MS method. What is more, the presence of PVP, mannitol, and magnesium stearate proved to affect the stability of metformin, while repaglinide stability was affected in the presence of PVP and magnesium stearate. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules24244430 |