Loading…

Manufacturing and Structural Features with Respect to the Modal Behavior of a Carbon Fiber-Reinforced Epoxy Drum Shell

This work evaluates the use of structural aspects in the manufacture of drum shells based on their modal behavior. The drum shells are made of composite carbon fiber-reinforced epoxy (CFRE) due to the structural variables commonly used in the industry for the manufacture of these musical instruments...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2019-12, Vol.12 (24), p.4069
Main Authors: Ibáñez-Arnal, Manuel, Doménech-Ballester, Luis, Sánchez-López, Fernando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work evaluates the use of structural aspects in the manufacture of drum shells based on their modal behavior. The drum shells are made of composite carbon fiber-reinforced epoxy (CFRE) due to the structural variables commonly used in the industry for the manufacture of these musical instruments. Musicians consider the shell of a membranophone to be responsible for the differences in timbre between different instruments. Normally, this variation focuses attention on the mechanical characteristics of the material and on the overall thickness of the cylinder that forms the shell. Some manufacturers, especially those that use metals and composites, resort to low thicknesses, below 2 mm, which forces them to use structural reinforcements at the edges of the cylindrical shell to avoid deformations due to the tension generated by the membranes. As shown in this research work, these structural elements have great relevance within the acoustic behavior of the drum shell. Comparisons are made among the frequencies obtained for the different vibrational modes by using finite element simulations, establishing the length of the structural solution previously mentioned and the number of plies of composite laminate as design variables, starting from the characteristics of a real case constructed with CFRE and concluding with experimental validation. The range of study is limited to the values of the frequencies generated by the membranes. The results demonstrate that the use of different manufacturing variables can lead to savings in production costs without compromising the modal behavior of the shell.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma12244069