Loading…

arcasHLA: high-resolution HLA typing from RNAseq

Abstract Motivation The human leukocyte antigen (HLA) locus plays a critical role in tissue compatibility and regulates the host response to many diseases, including cancers and autoimmune di3orders. Recent improvements in the quality and accessibility of next-generation sequencing have made HLA typ...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2020-01, Vol.36 (1), p.33-40
Main Authors: Orenbuch, Rose, Filip, Ioan, Comito, Devon, Shaman, Jeffrey, Pe’er, Itsik, Rabadan, Raul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Motivation The human leukocyte antigen (HLA) locus plays a critical role in tissue compatibility and regulates the host response to many diseases, including cancers and autoimmune di3orders. Recent improvements in the quality and accessibility of next-generation sequencing have made HLA typing from standard short-read data practical. However, this task remains challenging given the high level of polymorphism and homology between HLA genes. HLA typing from RNA sequencing is further complicated by post-transcriptional modifications and bias due to amplification. Results Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes from RNA-sequencing data. Our tool outperforms established tools on the gold-standard benchmark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of 100% at two-field resolution for Class I genes, and over 99.7% for Class II. Furthermore, we evaluate the performance of our tool on a new biological dataset of 447 single-end total RNA samples from nasopharyngeal swabs, and establish the applicability of arcasHLA in metatranscriptome studies. Availability and implementation arcasHLA is available at https://github.com/RabadanLab/arcasHLA. Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btz474