Loading…

Diabolical points in coupled active cavities with quantum emitters

In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the p...

Full description

Saved in:
Bibliographic Details
Published in:Light, science & applications science & applications, 2020-01, Vol.9 (1), p.6-6, Article 6
Main Authors: Yang, Jingnan, Qian, Chenjiang, Xie, Xin, Peng, Kai, Wu, Shiyao, Song, Feilong, Sun, Sibai, Dang, Jianchen, Yu, Yang, Shi, Shushu, He, Jiongji, Steer, Matthew J., Thayne, Iain G., Li, Bei-Bei, Bo, Fang, Xiao, Yun-Feng, Zuo, Zhanchun, Jin, Kuijuan, Gu, Changzhi, Xu, Xiulai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-ade7913a87f52d18b4f5742a7ac7a344f43f9a4ef5192a826af7a8d08646e4923
cites cdi_FETCH-LOGICAL-c470t-ade7913a87f52d18b4f5742a7ac7a344f43f9a4ef5192a826af7a8d08646e4923
container_end_page 6
container_issue 1
container_start_page 6
container_title Light, science & applications
container_volume 9
creator Yang, Jingnan
Qian, Chenjiang
Xie, Xin
Peng, Kai
Wu, Shiyao
Song, Feilong
Sun, Sibai
Dang, Jianchen
Yu, Yang
Shi, Shushu
He, Jiongji
Steer, Matthew J.
Thayne, Iain G.
Li, Bei-Bei
Bo, Fang
Xiao, Yun-Feng
Zuo, Zhanchun
Jin, Kuijuan
Gu, Changzhi
Xu, Xiulai
description In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering directions. Diabolical points in active optical structures pave the way for an implementation of quantum information processing with geometric phase in quantum photonic networks. Diabolically good control over quantum emitters A system of tiny coupled disks developed by researchers in China and Scotland could provide control over the emission of individual photons for quantum computing. Single-photon emitters are required for passing information in quantum photonic networks, but it is very difficult to control the direction that photons are emitted or to stop neighboring emitters from interfering. Xiulai Xu at the Chinese Academy of Sciences and co-workers fabricated pairs of 1-micrometer-radius disks, surrounded by even smaller particles called quantum dots. By exciting the quantum dots with a laser, the researchers set up so-called diabolical points in the coupled microdisks. These points allow control over the backscattering of light, as a function of the distance between disks. The study not only provides a new platform for quantum information processing but could also enable controllable directional lasers.
doi_str_mv 10.1038/s41377-020-0244-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6957493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344227249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ade7913a87f52d18b4f5742a7ac7a344f43f9a4ef5192a826af7a8d08646e4923</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMoKqs_wIsUvHip5mub5CLo-gmCFz2H2TTVSNusSbrivzdl_QYHwgTmmXdmeBHaI_iIYCaPIydMiBJTnB_npVpD2xRzUYopk-s__ltoN8ZnnENxgqXYRFuMqEopSbbR2bmDuW-dgbZYeNenWLi-MH5YtLYuwCS3tIWBpUvOxuLVpafiZYA-DV1hO5eSDXEHbTTQRrv7kSfo4fLifnZd3t5d3cxOb0vDBU4l1FYowkCKZkprIue8mQpOQYARwDhvOGsUcNtMiaIgaQWNAFljWfHKckXZBJ2sdBfDvLO1sX0K0OpFcB2EN-3B6d-V3j3pR7_UlcqDFMsChx8Cwb8MNibduWhs20Jv_RA1zVtQKmhmJ-jgD_rsh9Dn80aKYVxxMVJkRZngYwy2-VqGYD2apFcm6WySHk3SY8_-zyu-Oj4tyQBdATGX-kcbvkf_r_oOnryc1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343006479</pqid></control><display><type>article</type><title>Diabolical points in coupled active cavities with quantum emitters</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yang, Jingnan ; Qian, Chenjiang ; Xie, Xin ; Peng, Kai ; Wu, Shiyao ; Song, Feilong ; Sun, Sibai ; Dang, Jianchen ; Yu, Yang ; Shi, Shushu ; He, Jiongji ; Steer, Matthew J. ; Thayne, Iain G. ; Li, Bei-Bei ; Bo, Fang ; Xiao, Yun-Feng ; Zuo, Zhanchun ; Jin, Kuijuan ; Gu, Changzhi ; Xu, Xiulai</creator><creatorcontrib>Yang, Jingnan ; Qian, Chenjiang ; Xie, Xin ; Peng, Kai ; Wu, Shiyao ; Song, Feilong ; Sun, Sibai ; Dang, Jianchen ; Yu, Yang ; Shi, Shushu ; He, Jiongji ; Steer, Matthew J. ; Thayne, Iain G. ; Li, Bei-Bei ; Bo, Fang ; Xiao, Yun-Feng ; Zuo, Zhanchun ; Jin, Kuijuan ; Gu, Changzhi ; Xu, Xiulai</creatorcontrib><description>In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering directions. Diabolical points in active optical structures pave the way for an implementation of quantum information processing with geometric phase in quantum photonic networks. Diabolically good control over quantum emitters A system of tiny coupled disks developed by researchers in China and Scotland could provide control over the emission of individual photons for quantum computing. Single-photon emitters are required for passing information in quantum photonic networks, but it is very difficult to control the direction that photons are emitted or to stop neighboring emitters from interfering. Xiulai Xu at the Chinese Academy of Sciences and co-workers fabricated pairs of 1-micrometer-radius disks, surrounded by even smaller particles called quantum dots. By exciting the quantum dots with a laser, the researchers set up so-called diabolical points in the coupled microdisks. These points allow control over the backscattering of light, as a function of the distance between disks. The study not only provides a new platform for quantum information processing but could also enable controllable directional lasers.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-020-0244-9</identifier><identifier>PMID: 31969981</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/624/399/1097 ; 639/624/400/1113 ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Electrons ; Information processing ; Lasers ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Photons ; Physics ; Physics and Astronomy ; Quantum dots ; Researchers</subject><ispartof>Light, science &amp; applications, 2020-01, Vol.9 (1), p.6-6, Article 6</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ade7913a87f52d18b4f5742a7ac7a344f43f9a4ef5192a826af7a8d08646e4923</citedby><cites>FETCH-LOGICAL-c470t-ade7913a87f52d18b4f5742a7ac7a344f43f9a4ef5192a826af7a8d08646e4923</cites><orcidid>0000-0002-9197-5393 ; 0000-0002-2689-2807 ; 0000-0002-4764-6904 ; 0000-0002-0296-7130 ; 0000-0001-8231-406X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2343006479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2343006479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31969981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jingnan</creatorcontrib><creatorcontrib>Qian, Chenjiang</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Peng, Kai</creatorcontrib><creatorcontrib>Wu, Shiyao</creatorcontrib><creatorcontrib>Song, Feilong</creatorcontrib><creatorcontrib>Sun, Sibai</creatorcontrib><creatorcontrib>Dang, Jianchen</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Shi, Shushu</creatorcontrib><creatorcontrib>He, Jiongji</creatorcontrib><creatorcontrib>Steer, Matthew J.</creatorcontrib><creatorcontrib>Thayne, Iain G.</creatorcontrib><creatorcontrib>Li, Bei-Bei</creatorcontrib><creatorcontrib>Bo, Fang</creatorcontrib><creatorcontrib>Xiao, Yun-Feng</creatorcontrib><creatorcontrib>Zuo, Zhanchun</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Xu, Xiulai</creatorcontrib><title>Diabolical points in coupled active cavities with quantum emitters</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering directions. Diabolical points in active optical structures pave the way for an implementation of quantum information processing with geometric phase in quantum photonic networks. Diabolically good control over quantum emitters A system of tiny coupled disks developed by researchers in China and Scotland could provide control over the emission of individual photons for quantum computing. Single-photon emitters are required for passing information in quantum photonic networks, but it is very difficult to control the direction that photons are emitted or to stop neighboring emitters from interfering. Xiulai Xu at the Chinese Academy of Sciences and co-workers fabricated pairs of 1-micrometer-radius disks, surrounded by even smaller particles called quantum dots. By exciting the quantum dots with a laser, the researchers set up so-called diabolical points in the coupled microdisks. These points allow control over the backscattering of light, as a function of the distance between disks. The study not only provides a new platform for quantum information processing but could also enable controllable directional lasers.</description><subject>140/125</subject><subject>639/624/399/1097</subject><subject>639/624/400/1113</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Electrons</subject><subject>Information processing</subject><subject>Lasers</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Researchers</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kU1LxDAQhoMoKqs_wIsUvHip5mub5CLo-gmCFz2H2TTVSNusSbrivzdl_QYHwgTmmXdmeBHaI_iIYCaPIydMiBJTnB_npVpD2xRzUYopk-s__ltoN8ZnnENxgqXYRFuMqEopSbbR2bmDuW-dgbZYeNenWLi-MH5YtLYuwCS3tIWBpUvOxuLVpafiZYA-DV1hO5eSDXEHbTTQRrv7kSfo4fLifnZd3t5d3cxOb0vDBU4l1FYowkCKZkprIue8mQpOQYARwDhvOGsUcNtMiaIgaQWNAFljWfHKckXZBJ2sdBfDvLO1sX0K0OpFcB2EN-3B6d-V3j3pR7_UlcqDFMsChx8Cwb8MNibduWhs20Jv_RA1zVtQKmhmJ-jgD_rsh9Dn80aKYVxxMVJkRZngYwy2-VqGYD2apFcm6WySHk3SY8_-zyu-Oj4tyQBdATGX-kcbvkf_r_oOnryc1w</recordid><startdate>20200113</startdate><enddate>20200113</enddate><creator>Yang, Jingnan</creator><creator>Qian, Chenjiang</creator><creator>Xie, Xin</creator><creator>Peng, Kai</creator><creator>Wu, Shiyao</creator><creator>Song, Feilong</creator><creator>Sun, Sibai</creator><creator>Dang, Jianchen</creator><creator>Yu, Yang</creator><creator>Shi, Shushu</creator><creator>He, Jiongji</creator><creator>Steer, Matthew J.</creator><creator>Thayne, Iain G.</creator><creator>Li, Bei-Bei</creator><creator>Bo, Fang</creator><creator>Xiao, Yun-Feng</creator><creator>Zuo, Zhanchun</creator><creator>Jin, Kuijuan</creator><creator>Gu, Changzhi</creator><creator>Xu, Xiulai</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9197-5393</orcidid><orcidid>https://orcid.org/0000-0002-2689-2807</orcidid><orcidid>https://orcid.org/0000-0002-4764-6904</orcidid><orcidid>https://orcid.org/0000-0002-0296-7130</orcidid><orcidid>https://orcid.org/0000-0001-8231-406X</orcidid></search><sort><creationdate>20200113</creationdate><title>Diabolical points in coupled active cavities with quantum emitters</title><author>Yang, Jingnan ; Qian, Chenjiang ; Xie, Xin ; Peng, Kai ; Wu, Shiyao ; Song, Feilong ; Sun, Sibai ; Dang, Jianchen ; Yu, Yang ; Shi, Shushu ; He, Jiongji ; Steer, Matthew J. ; Thayne, Iain G. ; Li, Bei-Bei ; Bo, Fang ; Xiao, Yun-Feng ; Zuo, Zhanchun ; Jin, Kuijuan ; Gu, Changzhi ; Xu, Xiulai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ade7913a87f52d18b4f5742a7ac7a344f43f9a4ef5192a826af7a8d08646e4923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/125</topic><topic>639/624/399/1097</topic><topic>639/624/400/1113</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Electrons</topic><topic>Information processing</topic><topic>Lasers</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jingnan</creatorcontrib><creatorcontrib>Qian, Chenjiang</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Peng, Kai</creatorcontrib><creatorcontrib>Wu, Shiyao</creatorcontrib><creatorcontrib>Song, Feilong</creatorcontrib><creatorcontrib>Sun, Sibai</creatorcontrib><creatorcontrib>Dang, Jianchen</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Shi, Shushu</creatorcontrib><creatorcontrib>He, Jiongji</creatorcontrib><creatorcontrib>Steer, Matthew J.</creatorcontrib><creatorcontrib>Thayne, Iain G.</creatorcontrib><creatorcontrib>Li, Bei-Bei</creatorcontrib><creatorcontrib>Bo, Fang</creatorcontrib><creatorcontrib>Xiao, Yun-Feng</creatorcontrib><creatorcontrib>Zuo, Zhanchun</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Xu, Xiulai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jingnan</au><au>Qian, Chenjiang</au><au>Xie, Xin</au><au>Peng, Kai</au><au>Wu, Shiyao</au><au>Song, Feilong</au><au>Sun, Sibai</au><au>Dang, Jianchen</au><au>Yu, Yang</au><au>Shi, Shushu</au><au>He, Jiongji</au><au>Steer, Matthew J.</au><au>Thayne, Iain G.</au><au>Li, Bei-Bei</au><au>Bo, Fang</au><au>Xiao, Yun-Feng</au><au>Zuo, Zhanchun</au><au>Jin, Kuijuan</au><au>Gu, Changzhi</au><au>Xu, Xiulai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diabolical points in coupled active cavities with quantum emitters</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2020-01-13</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>6</spage><epage>6</epage><pages>6-6</pages><artnum>6</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering directions. Diabolical points in active optical structures pave the way for an implementation of quantum information processing with geometric phase in quantum photonic networks. Diabolically good control over quantum emitters A system of tiny coupled disks developed by researchers in China and Scotland could provide control over the emission of individual photons for quantum computing. Single-photon emitters are required for passing information in quantum photonic networks, but it is very difficult to control the direction that photons are emitted or to stop neighboring emitters from interfering. Xiulai Xu at the Chinese Academy of Sciences and co-workers fabricated pairs of 1-micrometer-radius disks, surrounded by even smaller particles called quantum dots. By exciting the quantum dots with a laser, the researchers set up so-called diabolical points in the coupled microdisks. These points allow control over the backscattering of light, as a function of the distance between disks. The study not only provides a new platform for quantum information processing but could also enable controllable directional lasers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31969981</pmid><doi>10.1038/s41377-020-0244-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9197-5393</orcidid><orcidid>https://orcid.org/0000-0002-2689-2807</orcidid><orcidid>https://orcid.org/0000-0002-4764-6904</orcidid><orcidid>https://orcid.org/0000-0002-0296-7130</orcidid><orcidid>https://orcid.org/0000-0001-8231-406X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2020-01, Vol.9 (1), p.6-6, Article 6
issn 2047-7538
2095-5545
2047-7538
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6957493
source PubMed Central Free; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 140/125
639/624/399/1097
639/624/400/1113
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Electrons
Information processing
Lasers
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Photons
Physics
Physics and Astronomy
Quantum dots
Researchers
title Diabolical points in coupled active cavities with quantum emitters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diabolical%20points%20in%20coupled%20active%20cavities%20with%20quantum%20emitters&rft.jtitle=Light,%20science%20&%20applications&rft.au=Yang,%20Jingnan&rft.date=2020-01-13&rft.volume=9&rft.issue=1&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.artnum=6&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-020-0244-9&rft_dat=%3Cproquest_pubme%3E2344227249%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-ade7913a87f52d18b4f5742a7ac7a344f43f9a4ef5192a826af7a8d08646e4923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343006479&rft_id=info:pmid/31969981&rfr_iscdi=true