Loading…

Connexin 26 and Connexin 43 in Canine Mammary Carcinoma

Incidence of canine mammary carcinoma is two times higher than the rate of human breast cancer. Mammary tumors are the most common type of cancer in intact female dogs and account for about half of all neoplasms in these dogs. Well-established models of breast cancer have shown that neoplastic cells...

Full description

Saved in:
Bibliographic Details
Published in:Veterinary sciences 2019-12, Vol.6 (4), p.101
Main Authors: Luu, Savannah, Bell, Cynthia, Schneider, Sarah, Nguyen, Thu Annelise
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Incidence of canine mammary carcinoma is two times higher than the rate of human breast cancer. Mammary tumors are the most common type of cancer in intact female dogs and account for about half of all neoplasms in these dogs. Well-established models of breast cancer have shown that neoplastic cells often have a loss of intercellular communication, particularly gap junction proteins. Thus, the objective of this study is to explore the aspect of gap junction intercellular communication in canine mammary carcinoma, non-cancerous (CMEC) and cancerous (CMT12, CMT27, and CF41.Mg) cells, and patient-derived tumors. Both non-cancerous and cancerous mammary cells express connexins 26 and 43 using immunofluorescence; however, the level of expression is significantly different in quantitative analysis using western blot in which connexin 43 in both CMT12 and CMT27 is significantly decreased compared to CMEC. Furthermore, a decrease of gap junction capacity in CMT12 and CMT27 was observed compared to CMEC. Immunostaining of CMT27-xenograft tumors revealed positive Cx26 and negative Cx43 expression. Similarly, immunostaining of spontaneous canine mammary tumors revealed that Cx26 is present in all tumors while Cx43 is present in 25% of tumors. Overall, the study provides for the first time that a differential pattern of connexin expression exists between non-cancerous and cancerous mammary cells in dogs. This study will pave the path for further in vitro work of connexins in comparative canine models and possibly allow for novel therapeutics to be developed.
ISSN:2306-7381
2306-7381
DOI:10.3390/vetsci6040101