Loading…
Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism
Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in va...
Saved in:
Published in: | Scientific reports 2020-01, Vol.10 (1), p.238, Article 238 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73 |
container_end_page | |
container_issue | 1 |
container_start_page | 238 |
container_title | Scientific reports |
container_volume | 10 |
creator | Løvsletten, Nils G. Vu, Helene Skagen, Christine Lund, Jenny Kase, Eili T. Thoresen, G. Hege Zammit, Victor A. Rustan, Arild C. |
description | Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA,
de novo
synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in
de novo
synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for
de novo
synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle. |
doi_str_mv | 10.1038/s41598-019-57157-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338990727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-AAlrj0EvBHvLYvSKjiS6rEpZwtrzPZdXHsxZMA23_Cv8Vh21I44IttzTPvjMdv0zxl9CWjQr_CjkmjW8pMKxWTqpUPmmNOO9lywfnDe-ej5hTxitYluemYedwcCWaE0lIcNz8vC7hphDSRPJDtPLpE8AtEmFwk44w-AvEQI5LvYdqSkLZhHaZccMH74Pw-buLeQ8mRLJepuIQDFIeAhBGXesLJlAn82MVcgATM1_sRWtyBD0PwpCZWMicSwy70ZKyF1zkGHJ80jwYXEU5v9pPm87u3l-cf2otP7z-ev7lovRRyagem3apbMTV406-FErLjwnsDminvQVGlHBXSrzXQlfFecNl3pveKU6Fkr8RJ8_qgu5vXI_S-jqK4aHcljK7sbXbB_h1JYWs3-ZtdGWkE01Xg-UHAl4BTSDbl4iyjWnKrVoLySpzdlCj56ww42THgMlWXIM9ouRDaGKr40s2Lf9CrPJdUB1Cprv6b1nKh-G3JjFhguGuXUbvYwx7sYas97G97WFmTnt1_6F3KrRkqIA4A1lDaQPlT-z-yvwB5Fsfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343198857</pqid></control><display><type>article</type><title>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Løvsletten, Nils G. ; Vu, Helene ; Skagen, Christine ; Lund, Jenny ; Kase, Eili T. ; Thoresen, G. Hege ; Zammit, Victor A. ; Rustan, Arild C.</creator><creatorcontrib>Løvsletten, Nils G. ; Vu, Helene ; Skagen, Christine ; Lund, Jenny ; Kase, Eili T. ; Thoresen, G. Hege ; Zammit, Victor A. ; Rustan, Arild C.</creatorcontrib><description>Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA,
de novo
synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in
de novo
synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for
de novo
synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57157-5</identifier><identifier>PMID: 31937853</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45 ; 631/80 ; Acetic Acid - metabolism ; Diacylglycerol O-acyltransferase ; Diacylglycerol O-Acyltransferase - antagonists & inhibitors ; Diglycerides ; Enzyme Inhibitors - pharmacology ; Enzymes ; Esterification ; Fatty acids ; Glucose ; Glucose - metabolism ; Glycerol ; Glycerol - metabolism ; Humanities and Social Sciences ; Humans ; Inhibitors ; Isoenzymes - antagonists & inhibitors ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipids ; Lipolysis ; Metabolism ; multidisciplinary ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Myotubes ; Oxidation ; Oxidation-Reduction - drug effects ; Science ; Science (multidisciplinary) ; Skeletal muscle</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.238, Article 238</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</citedby><cites>FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2343198857/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2343198857?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,26546,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31937853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Løvsletten, Nils G.</creatorcontrib><creatorcontrib>Vu, Helene</creatorcontrib><creatorcontrib>Skagen, Christine</creatorcontrib><creatorcontrib>Lund, Jenny</creatorcontrib><creatorcontrib>Kase, Eili T.</creatorcontrib><creatorcontrib>Thoresen, G. Hege</creatorcontrib><creatorcontrib>Zammit, Victor A.</creatorcontrib><creatorcontrib>Rustan, Arild C.</creatorcontrib><title>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA,
de novo
synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in
de novo
synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for
de novo
synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.</description><subject>631/45</subject><subject>631/80</subject><subject>Acetic Acid - metabolism</subject><subject>Diacylglycerol O-acyltransferase</subject><subject>Diacylglycerol O-Acyltransferase - antagonists & inhibitors</subject><subject>Diglycerides</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Esterification</subject><subject>Fatty acids</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Isoenzymes - antagonists & inhibitors</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Myotubes</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skeletal muscle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-AAlrj0EvBHvLYvSKjiS6rEpZwtrzPZdXHsxZMA23_Cv8Vh21I44IttzTPvjMdv0zxl9CWjQr_CjkmjW8pMKxWTqpUPmmNOO9lywfnDe-ej5hTxitYluemYedwcCWaE0lIcNz8vC7hphDSRPJDtPLpE8AtEmFwk44w-AvEQI5LvYdqSkLZhHaZccMH74Pw-buLeQ8mRLJepuIQDFIeAhBGXesLJlAn82MVcgATM1_sRWtyBD0PwpCZWMicSwy70ZKyF1zkGHJ80jwYXEU5v9pPm87u3l-cf2otP7z-ev7lovRRyagem3apbMTV406-FErLjwnsDminvQVGlHBXSrzXQlfFecNl3pveKU6Fkr8RJ8_qgu5vXI_S-jqK4aHcljK7sbXbB_h1JYWs3-ZtdGWkE01Xg-UHAl4BTSDbl4iyjWnKrVoLySpzdlCj56ww42THgMlWXIM9ouRDaGKr40s2Lf9CrPJdUB1Cprv6b1nKh-G3JjFhguGuXUbvYwx7sYas97G97WFmTnt1_6F3KrRkqIA4A1lDaQPlT-z-yvwB5Fsfc</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Løvsletten, Nils G.</creator><creator>Vu, Helene</creator><creator>Skagen, Christine</creator><creator>Lund, Jenny</creator><creator>Kase, Eili T.</creator><creator>Thoresen, G. Hege</creator><creator>Zammit, Victor A.</creator><creator>Rustan, Arild C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope></search><sort><creationdate>20200114</creationdate><title>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</title><author>Løvsletten, Nils G. ; Vu, Helene ; Skagen, Christine ; Lund, Jenny ; Kase, Eili T. ; Thoresen, G. Hege ; Zammit, Victor A. ; Rustan, Arild C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45</topic><topic>631/80</topic><topic>Acetic Acid - metabolism</topic><topic>Diacylglycerol O-acyltransferase</topic><topic>Diacylglycerol O-Acyltransferase - antagonists & inhibitors</topic><topic>Diglycerides</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Esterification</topic><topic>Fatty acids</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Isoenzymes - antagonists & inhibitors</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Myotubes</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Løvsletten, Nils G.</creatorcontrib><creatorcontrib>Vu, Helene</creatorcontrib><creatorcontrib>Skagen, Christine</creatorcontrib><creatorcontrib>Lund, Jenny</creatorcontrib><creatorcontrib>Kase, Eili T.</creatorcontrib><creatorcontrib>Thoresen, G. Hege</creatorcontrib><creatorcontrib>Zammit, Victor A.</creatorcontrib><creatorcontrib>Rustan, Arild C.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Løvsletten, Nils G.</au><au>Vu, Helene</au><au>Skagen, Christine</au><au>Lund, Jenny</au><au>Kase, Eili T.</au><au>Thoresen, G. Hege</au><au>Zammit, Victor A.</au><au>Rustan, Arild C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>238</spage><pages>238-</pages><artnum>238</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA,
de novo
synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in
de novo
synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for
de novo
synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31937853</pmid><doi>10.1038/s41598-019-57157-5</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-01, Vol.10 (1), p.238, Article 238 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959318 |
source | NORA - Norwegian Open Research Archives; Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/45 631/80 Acetic Acid - metabolism Diacylglycerol O-acyltransferase Diacylglycerol O-Acyltransferase - antagonists & inhibitors Diglycerides Enzyme Inhibitors - pharmacology Enzymes Esterification Fatty acids Glucose Glucose - metabolism Glycerol Glycerol - metabolism Humanities and Social Sciences Humans Inhibitors Isoenzymes - antagonists & inhibitors Lipid metabolism Lipid Metabolism - drug effects Lipids Lipolysis Metabolism multidisciplinary Muscle Fibers, Skeletal - drug effects Muscle Fibers, Skeletal - metabolism Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Musculoskeletal system Myotubes Oxidation Oxidation-Reduction - drug effects Science Science (multidisciplinary) Skeletal muscle |
title | Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20of%20human%20skeletal%20muscle%20cells%20with%20inhibitors%20of%20diacylglycerol%20acyltransferases%201%20and%202%20to%20explore%20isozyme-specific%20roles%20on%20lipid%20metabolism&rft.jtitle=Scientific%20reports&rft.au=L%C3%B8vsletten,%20Nils%20G.&rft.date=2020-01-14&rft.volume=10&rft.issue=1&rft.spage=238&rft.pages=238-&rft.artnum=238&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57157-5&rft_dat=%3Cproquest_pubme%3E2338990727%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343198857&rft_id=info:pmid/31937853&rfr_iscdi=true |