Loading…

Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism

Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in va...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-01, Vol.10 (1), p.238, Article 238
Main Authors: Løvsletten, Nils G., Vu, Helene, Skagen, Christine, Lund, Jenny, Kase, Eili T., Thoresen, G. Hege, Zammit, Victor A., Rustan, Arild C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73
cites cdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73
container_end_page
container_issue 1
container_start_page 238
container_title Scientific reports
container_volume 10
creator Løvsletten, Nils G.
Vu, Helene
Skagen, Christine
Lund, Jenny
Kase, Eili T.
Thoresen, G. Hege
Zammit, Victor A.
Rustan, Arild C.
description Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA, de novo synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in de novo synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for de novo synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.
doi_str_mv 10.1038/s41598-019-57157-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338990727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-AAlrj0EvBHvLYvSKjiS6rEpZwtrzPZdXHsxZMA23_Cv8Vh21I44IttzTPvjMdv0zxl9CWjQr_CjkmjW8pMKxWTqpUPmmNOO9lywfnDe-ej5hTxitYluemYedwcCWaE0lIcNz8vC7hphDSRPJDtPLpE8AtEmFwk44w-AvEQI5LvYdqSkLZhHaZccMH74Pw-buLeQ8mRLJepuIQDFIeAhBGXesLJlAn82MVcgATM1_sRWtyBD0PwpCZWMicSwy70ZKyF1zkGHJ80jwYXEU5v9pPm87u3l-cf2otP7z-ev7lovRRyagem3apbMTV406-FErLjwnsDminvQVGlHBXSrzXQlfFecNl3pveKU6Fkr8RJ8_qgu5vXI_S-jqK4aHcljK7sbXbB_h1JYWs3-ZtdGWkE01Xg-UHAl4BTSDbl4iyjWnKrVoLySpzdlCj56ww42THgMlWXIM9ouRDaGKr40s2Lf9CrPJdUB1Cprv6b1nKh-G3JjFhguGuXUbvYwx7sYas97G97WFmTnt1_6F3KrRkqIA4A1lDaQPlT-z-yvwB5Fsfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343198857</pqid></control><display><type>article</type><title>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Løvsletten, Nils G. ; Vu, Helene ; Skagen, Christine ; Lund, Jenny ; Kase, Eili T. ; Thoresen, G. Hege ; Zammit, Victor A. ; Rustan, Arild C.</creator><creatorcontrib>Løvsletten, Nils G. ; Vu, Helene ; Skagen, Christine ; Lund, Jenny ; Kase, Eili T. ; Thoresen, G. Hege ; Zammit, Victor A. ; Rustan, Arild C.</creatorcontrib><description>Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA, de novo synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in de novo synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for de novo synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57157-5</identifier><identifier>PMID: 31937853</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45 ; 631/80 ; Acetic Acid - metabolism ; Diacylglycerol O-acyltransferase ; Diacylglycerol O-Acyltransferase - antagonists &amp; inhibitors ; Diglycerides ; Enzyme Inhibitors - pharmacology ; Enzymes ; Esterification ; Fatty acids ; Glucose ; Glucose - metabolism ; Glycerol ; Glycerol - metabolism ; Humanities and Social Sciences ; Humans ; Inhibitors ; Isoenzymes - antagonists &amp; inhibitors ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipids ; Lipolysis ; Metabolism ; multidisciplinary ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Myotubes ; Oxidation ; Oxidation-Reduction - drug effects ; Science ; Science (multidisciplinary) ; Skeletal muscle</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.238, Article 238</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</citedby><cites>FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2343198857/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2343198857?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,26546,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31937853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Løvsletten, Nils G.</creatorcontrib><creatorcontrib>Vu, Helene</creatorcontrib><creatorcontrib>Skagen, Christine</creatorcontrib><creatorcontrib>Lund, Jenny</creatorcontrib><creatorcontrib>Kase, Eili T.</creatorcontrib><creatorcontrib>Thoresen, G. Hege</creatorcontrib><creatorcontrib>Zammit, Victor A.</creatorcontrib><creatorcontrib>Rustan, Arild C.</creatorcontrib><title>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA, de novo synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in de novo synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for de novo synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.</description><subject>631/45</subject><subject>631/80</subject><subject>Acetic Acid - metabolism</subject><subject>Diacylglycerol O-acyltransferase</subject><subject>Diacylglycerol O-Acyltransferase - antagonists &amp; inhibitors</subject><subject>Diglycerides</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Esterification</subject><subject>Fatty acids</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Isoenzymes - antagonists &amp; inhibitors</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Myotubes</subject><subject>Oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skeletal muscle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-AAlrj0EvBHvLYvSKjiS6rEpZwtrzPZdXHsxZMA23_Cv8Vh21I44IttzTPvjMdv0zxl9CWjQr_CjkmjW8pMKxWTqpUPmmNOO9lywfnDe-ej5hTxitYluemYedwcCWaE0lIcNz8vC7hphDSRPJDtPLpE8AtEmFwk44w-AvEQI5LvYdqSkLZhHaZccMH74Pw-buLeQ8mRLJepuIQDFIeAhBGXesLJlAn82MVcgATM1_sRWtyBD0PwpCZWMicSwy70ZKyF1zkGHJ80jwYXEU5v9pPm87u3l-cf2otP7z-ev7lovRRyagem3apbMTV406-FErLjwnsDminvQVGlHBXSrzXQlfFecNl3pveKU6Fkr8RJ8_qgu5vXI_S-jqK4aHcljK7sbXbB_h1JYWs3-ZtdGWkE01Xg-UHAl4BTSDbl4iyjWnKrVoLySpzdlCj56ww42THgMlWXIM9ouRDaGKr40s2Lf9CrPJdUB1Cprv6b1nKh-G3JjFhguGuXUbvYwx7sYas97G97WFmTnt1_6F3KrRkqIA4A1lDaQPlT-z-yvwB5Fsfc</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Løvsletten, Nils G.</creator><creator>Vu, Helene</creator><creator>Skagen, Christine</creator><creator>Lund, Jenny</creator><creator>Kase, Eili T.</creator><creator>Thoresen, G. Hege</creator><creator>Zammit, Victor A.</creator><creator>Rustan, Arild C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope></search><sort><creationdate>20200114</creationdate><title>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</title><author>Løvsletten, Nils G. ; Vu, Helene ; Skagen, Christine ; Lund, Jenny ; Kase, Eili T. ; Thoresen, G. Hege ; Zammit, Victor A. ; Rustan, Arild C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45</topic><topic>631/80</topic><topic>Acetic Acid - metabolism</topic><topic>Diacylglycerol O-acyltransferase</topic><topic>Diacylglycerol O-Acyltransferase - antagonists &amp; inhibitors</topic><topic>Diglycerides</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Esterification</topic><topic>Fatty acids</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Isoenzymes - antagonists &amp; inhibitors</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Myotubes</topic><topic>Oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Løvsletten, Nils G.</creatorcontrib><creatorcontrib>Vu, Helene</creatorcontrib><creatorcontrib>Skagen, Christine</creatorcontrib><creatorcontrib>Lund, Jenny</creatorcontrib><creatorcontrib>Kase, Eili T.</creatorcontrib><creatorcontrib>Thoresen, G. Hege</creatorcontrib><creatorcontrib>Zammit, Victor A.</creatorcontrib><creatorcontrib>Rustan, Arild C.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Løvsletten, Nils G.</au><au>Vu, Helene</au><au>Skagen, Christine</au><au>Lund, Jenny</au><au>Kase, Eili T.</au><au>Thoresen, G. Hege</au><au>Zammit, Victor A.</au><au>Rustan, Arild C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>238</spage><pages>238-</pages><artnum>238</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Diacylglycerol acyltransferases (DGAT) 1 and 2 catalyse the final step in triacylglycerol (TAG) synthesis, the esterification of fatty acyl-CoA to diacylglycerol. Despite catalysing the same reaction and being present in the same cell types, they exhibit different functions on lipid metabolism in various tissues. Yet, their roles in skeletal muscle remain poorly defined. In this study, we investigated how selective inhibitors of DGAT1 and DGAT2 affected lipid metabolism in human primary skeletal muscle cells. The results showed that DGAT1 was dominant in human skeletal muscle cells utilizing fatty acids (FAs) derived from various sources, both exogenously supplied FA, de novo synthesised FA, or FA derived from lipolysis, to generate TAG, as well as being involved in de novo synthesis of TAG. On the other hand, DGAT2 seemed to be specialised for de novo synthesis of TAG from glycerol-3-posphate only. Interestingly, DGAT activities were also important for regulating FA oxidation, indicating a key role in balancing FAs between storage in TAG and efficient utilization through oxidation. Finally, we observed that inhibition of DGAT enzymes could potentially alter glucose–FA interactions in skeletal muscle. In summary, treatment with DGAT1 or DGAT2 specific inhibitors resulted in different responses on lipid metabolism in human myotubes, indicating that the two enzymes play distinct roles in TAG metabolism in skeletal muscle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31937853</pmid><doi>10.1038/s41598-019-57157-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-01, Vol.10 (1), p.238, Article 238
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6959318
source NORA - Norwegian Open Research Archives; Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45
631/80
Acetic Acid - metabolism
Diacylglycerol O-acyltransferase
Diacylglycerol O-Acyltransferase - antagonists & inhibitors
Diglycerides
Enzyme Inhibitors - pharmacology
Enzymes
Esterification
Fatty acids
Glucose
Glucose - metabolism
Glycerol
Glycerol - metabolism
Humanities and Social Sciences
Humans
Inhibitors
Isoenzymes - antagonists & inhibitors
Lipid metabolism
Lipid Metabolism - drug effects
Lipids
Lipolysis
Metabolism
multidisciplinary
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Musculoskeletal system
Myotubes
Oxidation
Oxidation-Reduction - drug effects
Science
Science (multidisciplinary)
Skeletal muscle
title Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20of%20human%20skeletal%20muscle%20cells%20with%20inhibitors%20of%20diacylglycerol%20acyltransferases%201%20and%202%20to%20explore%20isozyme-specific%20roles%20on%20lipid%20metabolism&rft.jtitle=Scientific%20reports&rft.au=L%C3%B8vsletten,%20Nils%20G.&rft.date=2020-01-14&rft.volume=10&rft.issue=1&rft.spage=238&rft.pages=238-&rft.artnum=238&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57157-5&rft_dat=%3Cproquest_pubme%3E2338990727%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-f18a64617fc9db3735423cc9e817cce7077a035cb8e069cc325d49dc720375d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343198857&rft_id=info:pmid/31937853&rfr_iscdi=true