Loading…
Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors
To extend the applications of natural polymer-based hydrogels to wearable sensors, it is both important and a great challenge to improve their mechanical and electrical performance. In this work, highly stretchable, strain-sensitive, and ionic-conductive cellulose-based hydrogels (CHs) were prepared...
Saved in:
Published in: | Polymers 2019-12, Vol.11 (12), p.2067 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To extend the applications of natural polymer-based hydrogels to wearable sensors, it is both important and a great challenge to improve their mechanical and electrical performance. In this work, highly stretchable, strain-sensitive, and ionic-conductive cellulose-based hydrogels (CHs) were prepared by random copolymerization of allyl cellulose and acrylic acid. The acquired hydrogels exhibit high stretchability (~142% of tensile strain) and good transparency (~86% at 550 nm). In addition, the hydrogels not only demonstrate better sensitivity in a wide linear range (0%-100%) but also exhibit excellent repeatable and stable signals even after 1000 cycles. Notably, hydrogel-based wearable sensors were successfully constructed to detect human movements. Their reliability, sensitivity, and wide-range properties endow the CHs with great potential for application in various wearable sensors. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym11122067 |