Loading…
Random Telegraph Noises from the Source Follower, the Photodiode Dark Current, and the Gate-Induced Sense Node Leakage in CMOS Image Sensors
In this paper we present a systematic approach to sort out different types of random telegraph noises (RTN) in CMOS image sensors (CIS) by examining their dependencies on the transfer gate off-voltage, the reset gate off-voltage, the photodiode integration time, and the sense node charge retention t...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-12, Vol.19 (24), p.5447 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present a systematic approach to sort out different types of random telegraph noises (RTN) in CMOS image sensors (CIS) by examining their dependencies on the transfer gate off-voltage, the reset gate off-voltage, the photodiode integration time, and the sense node charge retention time. Besides the well-known source follower RTN, we have identified the RTN caused by varying photodiode dark current, transfer-gate and reset-gate induced sense node leakage. These four types of RTN and the dark signal shot noises dominate the noise distribution tails of CIS and non-CIS chips under test, either with or without X-ray irradiation. The effect of correlated multiple sampling (CMS) on noise reduction is studied and a theoretical model is developed to account for the measurement results. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19245447 |