Loading…

Physiological and pathophysiological evaluation of baroreflex functionality with concurrent diffusion tensor imaging of its neural circuit in the rat

By measuring the prevalence of neuronal traffic between two brain structures based on the notion that diffusion of water molecules along the axon in parallel bundles will create prominent anisotropy in the direction of the passage of action potentials, diffusion tensor imaging (DTI) may be taken as...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical Journal 2019-12, Vol.42 (6), p.381-393
Main Authors: Tsai, Ching-Yi, Wu, Jacqueline C C, Chen, Shu-Mi, Lin, Hsun-Hsun, Chan, Julie Y H, Chan, Samuel H H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-eb2ad449533025ef6dbe46e9cb7eeece1c51ef2959bf3aec38a5eccdde56a8693
cites
container_end_page 393
container_issue 6
container_start_page 381
container_title Biomedical Journal
container_volume 42
creator Tsai, Ching-Yi
Wu, Jacqueline C C
Chen, Shu-Mi
Lin, Hsun-Hsun
Chan, Julie Y H
Chan, Samuel H H
description By measuring the prevalence of neuronal traffic between two brain structures based on the notion that diffusion of water molecules along the axon in parallel bundles will create prominent anisotropy in the direction of the passage of action potentials, diffusion tensor imaging (DTI) may be taken as an effective tool for functional investigations. Demonstration of complementary results obtained from synchronized DTI of the baroreflex neural circuit and physiological or pathophysiological evaluation of baroreflex functionality should validate this notion. We implemented concurrent changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone in the brain stem and alterations of its experimental surrogate under physiological and pathophysiological conditions. We further evaluated the functional and clinical implications of results obtained from this experimental paradigm in conjunction with baroreflex induction and a mevinphos intoxication model of brain stem death. We found that robust connectivity existed between the nucleus tractus solitarii and rostral ventrolateral medulla, the afferent and efferent nuclei of the baroreflex-mediated sympathetic vasomotor. Intriguingly, this connectivity was either reversibly disrupted or irreversibly severed to reflect alterations in baroreflex responses to physiological or pathophysiological challenges. The capability to observe simultaneous and complementary changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone and alterations of its experimental surrogate that bears technical, scientific and clinical implications sustains the notion that coupled with relevant physiological phenotypes, DTI can be an effective investigative tool for functional evaluations of brain stem activities.
doi_str_mv 10.1016/j.bj.2019.10.006
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f9979c351ba140a4be4ff0f335cf0c90</doaj_id><sourcerecordid>2337012119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-eb2ad449533025ef6dbe46e9cb7eeece1c51ef2959bf3aec38a5eccdde56a8693</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEolXpnROyxIVLFn_FiS9IqIJSqRIc4Bw5zjhxlLUXfxT2h_B_cdqCWHyx_c47j2c8VfWS4B3BRLxddsOyo5jIct1hLJ5U55RRXNNO4qfbmciakxafVZcxLrisjgiC2fPqrIR4JzA9r359mY_R-tVPVqsVKTeig0qzP5zIcKfWrJL1DnmDBhV8ALPCT2Sy05usVpuO6IdNM9Le6RwCuIRGa0yOW1YCF31Adq8m66YNYlNEDnIodG2DzjYhW3wzoKDSi-qZUWuEy8f9ovr28cPXq0_17efrm6v3t7VuOEk1DFSNnMuGMUwbMGIcgAuQemgBQAPRDQFDZSMHwxRo1qkGtB5HaITqhGQX1c0Dd_Rq6Q-h1BeOvVe2vxd8mHoVktUr9EbKVmrWkEERjhUvLxmDDWONNlhLXFjvHliHPOxh1OUDSnMn0NOIs3M_-bteSEFbTgvgzSMg-O8ZYur3NmpYV-XA59hTxolgWPK2WF__Z118DmUKm4u1mFBCtu5e_VvR31L-TJ_9BqHDuNQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337012119</pqid></control><display><type>article</type><title>Physiological and pathophysiological evaluation of baroreflex functionality with concurrent diffusion tensor imaging of its neural circuit in the rat</title><source>PubMed Central (Open Access)</source><source>ScienceDirect®</source><source>Publicly Available Content Database</source><creator>Tsai, Ching-Yi ; Wu, Jacqueline C C ; Chen, Shu-Mi ; Lin, Hsun-Hsun ; Chan, Julie Y H ; Chan, Samuel H H</creator><creatorcontrib>Tsai, Ching-Yi ; Wu, Jacqueline C C ; Chen, Shu-Mi ; Lin, Hsun-Hsun ; Chan, Julie Y H ; Chan, Samuel H H</creatorcontrib><description>By measuring the prevalence of neuronal traffic between two brain structures based on the notion that diffusion of water molecules along the axon in parallel bundles will create prominent anisotropy in the direction of the passage of action potentials, diffusion tensor imaging (DTI) may be taken as an effective tool for functional investigations. Demonstration of complementary results obtained from synchronized DTI of the baroreflex neural circuit and physiological or pathophysiological evaluation of baroreflex functionality should validate this notion. We implemented concurrent changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone in the brain stem and alterations of its experimental surrogate under physiological and pathophysiological conditions. We further evaluated the functional and clinical implications of results obtained from this experimental paradigm in conjunction with baroreflex induction and a mevinphos intoxication model of brain stem death. We found that robust connectivity existed between the nucleus tractus solitarii and rostral ventrolateral medulla, the afferent and efferent nuclei of the baroreflex-mediated sympathetic vasomotor. Intriguingly, this connectivity was either reversibly disrupted or irreversibly severed to reflect alterations in baroreflex responses to physiological or pathophysiological challenges. The capability to observe simultaneous and complementary changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone and alterations of its experimental surrogate that bears technical, scientific and clinical implications sustains the notion that coupled with relevant physiological phenotypes, DTI can be an effective investigative tool for functional evaluations of brain stem activities.</description><identifier>ISSN: 2319-4170</identifier><identifier>ISSN: 2320-2890</identifier><identifier>EISSN: 2320-2890</identifier><identifier>DOI: 10.1016/j.bj.2019.10.006</identifier><identifier>PMID: 31948602</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Animals ; Anisotropy ; Baroreceptors ; Baroreflex - physiology ; Blood pressure ; Blood Pressure - physiology ; Brain stem ; Brain Stem - pathology ; Brain Stem - physiology ; Circuits ; Diffusion ; Diffusion Tensor Imaging - methods ; Evaluation ; Fourier transforms ; Intoxication ; Laboratory animals ; Magnetic fields ; Magnetic resonance imaging ; Male ; Mathematical analysis ; Medulla oblongata ; Nerve Net - pathology ; Nerve Net - physiology ; Neural networks ; Neuroimaging ; Neurons - physiology ; Original article ; Phenotypes ; Physiology ; Polyethylene ; Rats, Sprague-Dawley ; Recording sessions ; Reflexes ; Scanners ; Sensory neurons ; Solitary Nucleus - pathology ; Solitary Nucleus - physiology ; Solitary tract nucleus ; Tensors ; Veins &amp; arteries ; Water chemistry</subject><ispartof>Biomedical Journal, 2019-12, Vol.42 (6), p.381-393</ispartof><rights>Copyright © 2019 Chang Gung University. Published by Elsevier B.V. All rights reserved.</rights><rights>2019. Chang Gung University</rights><rights>2019 Chang Gung University. Publishing services by Elsevier B.V. 2019 Chang Gung University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-eb2ad449533025ef6dbe46e9cb7eeece1c51ef2959bf3aec38a5eccdde56a8693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962742/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2337012119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31948602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Ching-Yi</creatorcontrib><creatorcontrib>Wu, Jacqueline C C</creatorcontrib><creatorcontrib>Chen, Shu-Mi</creatorcontrib><creatorcontrib>Lin, Hsun-Hsun</creatorcontrib><creatorcontrib>Chan, Julie Y H</creatorcontrib><creatorcontrib>Chan, Samuel H H</creatorcontrib><title>Physiological and pathophysiological evaluation of baroreflex functionality with concurrent diffusion tensor imaging of its neural circuit in the rat</title><title>Biomedical Journal</title><addtitle>Biomed J</addtitle><description>By measuring the prevalence of neuronal traffic between two brain structures based on the notion that diffusion of water molecules along the axon in parallel bundles will create prominent anisotropy in the direction of the passage of action potentials, diffusion tensor imaging (DTI) may be taken as an effective tool for functional investigations. Demonstration of complementary results obtained from synchronized DTI of the baroreflex neural circuit and physiological or pathophysiological evaluation of baroreflex functionality should validate this notion. We implemented concurrent changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone in the brain stem and alterations of its experimental surrogate under physiological and pathophysiological conditions. We further evaluated the functional and clinical implications of results obtained from this experimental paradigm in conjunction with baroreflex induction and a mevinphos intoxication model of brain stem death. We found that robust connectivity existed between the nucleus tractus solitarii and rostral ventrolateral medulla, the afferent and efferent nuclei of the baroreflex-mediated sympathetic vasomotor. Intriguingly, this connectivity was either reversibly disrupted or irreversibly severed to reflect alterations in baroreflex responses to physiological or pathophysiological challenges. The capability to observe simultaneous and complementary changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone and alterations of its experimental surrogate that bears technical, scientific and clinical implications sustains the notion that coupled with relevant physiological phenotypes, DTI can be an effective investigative tool for functional evaluations of brain stem activities.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Baroreceptors</subject><subject>Baroreflex - physiology</subject><subject>Blood pressure</subject><subject>Blood Pressure - physiology</subject><subject>Brain stem</subject><subject>Brain Stem - pathology</subject><subject>Brain Stem - physiology</subject><subject>Circuits</subject><subject>Diffusion</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Evaluation</subject><subject>Fourier transforms</subject><subject>Intoxication</subject><subject>Laboratory animals</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Medulla oblongata</subject><subject>Nerve Net - pathology</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons - physiology</subject><subject>Original article</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Polyethylene</subject><subject>Rats, Sprague-Dawley</subject><subject>Recording sessions</subject><subject>Reflexes</subject><subject>Scanners</subject><subject>Sensory neurons</subject><subject>Solitary Nucleus - pathology</subject><subject>Solitary Nucleus - physiology</subject><subject>Solitary tract nucleus</subject><subject>Tensors</subject><subject>Veins &amp; arteries</subject><subject>Water chemistry</subject><issn>2319-4170</issn><issn>2320-2890</issn><issn>2320-2890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1v1DAQhiMEolXpnROyxIVLFn_FiS9IqIJSqRIc4Bw5zjhxlLUXfxT2h_B_cdqCWHyx_c47j2c8VfWS4B3BRLxddsOyo5jIct1hLJ5U55RRXNNO4qfbmciakxafVZcxLrisjgiC2fPqrIR4JzA9r359mY_R-tVPVqsVKTeig0qzP5zIcKfWrJL1DnmDBhV8ALPCT2Sy05usVpuO6IdNM9Le6RwCuIRGa0yOW1YCF31Adq8m66YNYlNEDnIodG2DzjYhW3wzoKDSi-qZUWuEy8f9ovr28cPXq0_17efrm6v3t7VuOEk1DFSNnMuGMUwbMGIcgAuQemgBQAPRDQFDZSMHwxRo1qkGtB5HaITqhGQX1c0Dd_Rq6Q-h1BeOvVe2vxd8mHoVktUr9EbKVmrWkEERjhUvLxmDDWONNlhLXFjvHliHPOxh1OUDSnMn0NOIs3M_-bteSEFbTgvgzSMg-O8ZYur3NmpYV-XA59hTxolgWPK2WF__Z118DmUKm4u1mFBCtu5e_VvR31L-TJ_9BqHDuNQ</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Tsai, Ching-Yi</creator><creator>Wu, Jacqueline C C</creator><creator>Chen, Shu-Mi</creator><creator>Lin, Hsun-Hsun</creator><creator>Chan, Julie Y H</creator><creator>Chan, Samuel H H</creator><general>Elsevier Limited</general><general>Chang Gung University</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>201912</creationdate><title>Physiological and pathophysiological evaluation of baroreflex functionality with concurrent diffusion tensor imaging of its neural circuit in the rat</title><author>Tsai, Ching-Yi ; Wu, Jacqueline C C ; Chen, Shu-Mi ; Lin, Hsun-Hsun ; Chan, Julie Y H ; Chan, Samuel H H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-eb2ad449533025ef6dbe46e9cb7eeece1c51ef2959bf3aec38a5eccdde56a8693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Baroreceptors</topic><topic>Baroreflex - physiology</topic><topic>Blood pressure</topic><topic>Blood Pressure - physiology</topic><topic>Brain stem</topic><topic>Brain Stem - pathology</topic><topic>Brain Stem - physiology</topic><topic>Circuits</topic><topic>Diffusion</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Evaluation</topic><topic>Fourier transforms</topic><topic>Intoxication</topic><topic>Laboratory animals</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Medulla oblongata</topic><topic>Nerve Net - pathology</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons - physiology</topic><topic>Original article</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Polyethylene</topic><topic>Rats, Sprague-Dawley</topic><topic>Recording sessions</topic><topic>Reflexes</topic><topic>Scanners</topic><topic>Sensory neurons</topic><topic>Solitary Nucleus - pathology</topic><topic>Solitary Nucleus - physiology</topic><topic>Solitary tract nucleus</topic><topic>Tensors</topic><topic>Veins &amp; arteries</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Ching-Yi</creatorcontrib><creatorcontrib>Wu, Jacqueline C C</creatorcontrib><creatorcontrib>Chen, Shu-Mi</creatorcontrib><creatorcontrib>Lin, Hsun-Hsun</creatorcontrib><creatorcontrib>Chan, Julie Y H</creatorcontrib><creatorcontrib>Chan, Samuel H H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Ching-Yi</au><au>Wu, Jacqueline C C</au><au>Chen, Shu-Mi</au><au>Lin, Hsun-Hsun</au><au>Chan, Julie Y H</au><au>Chan, Samuel H H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological and pathophysiological evaluation of baroreflex functionality with concurrent diffusion tensor imaging of its neural circuit in the rat</atitle><jtitle>Biomedical Journal</jtitle><addtitle>Biomed J</addtitle><date>2019-12</date><risdate>2019</risdate><volume>42</volume><issue>6</issue><spage>381</spage><epage>393</epage><pages>381-393</pages><issn>2319-4170</issn><issn>2320-2890</issn><eissn>2320-2890</eissn><abstract>By measuring the prevalence of neuronal traffic between two brain structures based on the notion that diffusion of water molecules along the axon in parallel bundles will create prominent anisotropy in the direction of the passage of action potentials, diffusion tensor imaging (DTI) may be taken as an effective tool for functional investigations. Demonstration of complementary results obtained from synchronized DTI of the baroreflex neural circuit and physiological or pathophysiological evaluation of baroreflex functionality should validate this notion. We implemented concurrent changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone in the brain stem and alterations of its experimental surrogate under physiological and pathophysiological conditions. We further evaluated the functional and clinical implications of results obtained from this experimental paradigm in conjunction with baroreflex induction and a mevinphos intoxication model of brain stem death. We found that robust connectivity existed between the nucleus tractus solitarii and rostral ventrolateral medulla, the afferent and efferent nuclei of the baroreflex-mediated sympathetic vasomotor. Intriguingly, this connectivity was either reversibly disrupted or irreversibly severed to reflect alterations in baroreflex responses to physiological or pathophysiological challenges. The capability to observe simultaneous and complementary changes in neuronal traffic within the neural circuit of the baroreflex-mediated sympathetic vasomotor tone and alterations of its experimental surrogate that bears technical, scientific and clinical implications sustains the notion that coupled with relevant physiological phenotypes, DTI can be an effective investigative tool for functional evaluations of brain stem activities.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>31948602</pmid><doi>10.1016/j.bj.2019.10.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2319-4170
ispartof Biomedical Journal, 2019-12, Vol.42 (6), p.381-393
issn 2319-4170
2320-2890
2320-2890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962742
source PubMed Central (Open Access); ScienceDirect®; Publicly Available Content Database
subjects Animals
Anisotropy
Baroreceptors
Baroreflex - physiology
Blood pressure
Blood Pressure - physiology
Brain stem
Brain Stem - pathology
Brain Stem - physiology
Circuits
Diffusion
Diffusion Tensor Imaging - methods
Evaluation
Fourier transforms
Intoxication
Laboratory animals
Magnetic fields
Magnetic resonance imaging
Male
Mathematical analysis
Medulla oblongata
Nerve Net - pathology
Nerve Net - physiology
Neural networks
Neuroimaging
Neurons - physiology
Original article
Phenotypes
Physiology
Polyethylene
Rats, Sprague-Dawley
Recording sessions
Reflexes
Scanners
Sensory neurons
Solitary Nucleus - pathology
Solitary Nucleus - physiology
Solitary tract nucleus
Tensors
Veins & arteries
Water chemistry
title Physiological and pathophysiological evaluation of baroreflex functionality with concurrent diffusion tensor imaging of its neural circuit in the rat
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20and%20pathophysiological%20evaluation%20of%20baroreflex%20functionality%20with%20concurrent%20diffusion%20tensor%20imaging%20of%20its%20neural%20circuit%20in%20the%20rat&rft.jtitle=Biomedical%20Journal&rft.au=Tsai,%20Ching-Yi&rft.date=2019-12&rft.volume=42&rft.issue=6&rft.spage=381&rft.epage=393&rft.pages=381-393&rft.issn=2319-4170&rft.eissn=2320-2890&rft_id=info:doi/10.1016/j.bj.2019.10.006&rft_dat=%3Cproquest_doaj_%3E2337012119%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-eb2ad449533025ef6dbe46e9cb7eeece1c51ef2959bf3aec38a5eccdde56a8693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2337012119&rft_id=info:pmid/31948602&rfr_iscdi=true