Loading…

An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis

Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 pho...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell 2020-01, Vol.77 (2), p.228-240.e7
Main Authors: Odle, Richard I., Walker, Simon A., Oxley, David, Kidger, Andrew M., Balmanno, Kathryn, Gilley, Rebecca, Okkenhaug, Hanneke, Florey, Oliver, Ktistakis, Nicholas T., Cook, Simon J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3
cites cdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3
container_end_page 240.e7
container_issue 2
container_start_page 228
container_title Molecular cell
container_volume 77
creator Odle, Richard I.
Walker, Simon A.
Oxley, David
Kidger, Andrew M.
Balmanno, Kathryn
Gilley, Rebecca
Okkenhaug, Hanneke
Florey, Oliver
Ktistakis, Nicholas T.
Cook, Simon J.
description Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis. [Display omitted] •Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability.
doi_str_mv 10.1016/j.molcel.2019.10.016
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6964153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276519307944</els_id><sourcerecordid>2439380777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</originalsourceid><addsrcrecordid>eNqFUctu2zAQJIoEzaP5g6LQMRe5XD5E8VLAcNqkSIIAdXomZIqyaUiiSlIu8velYddJLsmBIDGcnd3ZQegz4AlgKL6uJ51rtWknBINM0CSBH9ApYClyBgU72r-JKPgJOgthjTEwXsqP6ISCoFRKcoqup33WPT78mkEeXT67uoVs_tdGvcruK9vHdEI2HaMbVtXyKZuPw-BNCNb1WT162y-zextdsOETOm6qNpiL_X2Ofv_4_ji7ye8ern_Opne55gWJeYG5KBccGi2IbOhCUgbCEKaFWAhC6rLkJS1rAUVlJMiSa0l0IyWwGsBoTc_Rt53uMC46U2vTR1-1avC2q_yTcpVVr396u1JLt1GFLBhwmgQu9wLe_RlNiKqzIa2xrXrjxqAIo5KWWAjxPpUC50QCgURlO6r2LgRvmsNEgNU2LrVWu7jUNq4tmsBU9uWlm0PR_3ye7Zq00401XgVtTa9Nbb3RUdXOvt3hH5Dvpwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315529121</pqid></control><display><type>article</type><title>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Odle, Richard I. ; Walker, Simon A. ; Oxley, David ; Kidger, Andrew M. ; Balmanno, Kathryn ; Gilley, Rebecca ; Okkenhaug, Hanneke ; Florey, Oliver ; Ktistakis, Nicholas T. ; Cook, Simon J.</creator><creatorcontrib>Odle, Richard I. ; Walker, Simon A. ; Oxley, David ; Kidger, Andrew M. ; Balmanno, Kathryn ; Gilley, Rebecca ; Okkenhaug, Hanneke ; Florey, Oliver ; Ktistakis, Nicholas T. ; Cook, Simon J.</creatorcontrib><description>Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis. [Display omitted] •Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2019.10.016</identifier><identifier>PMID: 31733992</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>A549 Cells ; Animalia ; ATG13 ; ATG14 ; autophagy ; Autophagy - physiology ; CDC2 Protein Kinase - metabolism ; CDK1 ; Cell Line ; Cell Line, Tumor ; Female ; genome ; HCT116 Cells ; HEK293 Cells ; HeLa Cells ; HT29 Cells ; Humans ; lysosomes ; Lysosomes - metabolism ; macroautophagy ; Male ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; mitosis ; Mitosis - physiology ; mTOR ; nuclear membrane ; phosphorylation ; Phosphorylation - physiology ; RAPTOR ; Signal Transduction - physiology ; TFEB ; ULK1</subject><ispartof>Molecular cell, 2020-01, Vol.77 (2), p.228-240.e7</ispartof><rights>2019</rights><rights>Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved.</rights><rights>Crown Copyright © 2019 Published by Elsevier Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</citedby><cites>FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31733992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odle, Richard I.</creatorcontrib><creatorcontrib>Walker, Simon A.</creatorcontrib><creatorcontrib>Oxley, David</creatorcontrib><creatorcontrib>Kidger, Andrew M.</creatorcontrib><creatorcontrib>Balmanno, Kathryn</creatorcontrib><creatorcontrib>Gilley, Rebecca</creatorcontrib><creatorcontrib>Okkenhaug, Hanneke</creatorcontrib><creatorcontrib>Florey, Oliver</creatorcontrib><creatorcontrib>Ktistakis, Nicholas T.</creatorcontrib><creatorcontrib>Cook, Simon J.</creatorcontrib><title>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis. [Display omitted] •Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability.</description><subject>A549 Cells</subject><subject>Animalia</subject><subject>ATG13</subject><subject>ATG14</subject><subject>autophagy</subject><subject>Autophagy - physiology</subject><subject>CDC2 Protein Kinase - metabolism</subject><subject>CDK1</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Female</subject><subject>genome</subject><subject>HCT116 Cells</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>HT29 Cells</subject><subject>Humans</subject><subject>lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>macroautophagy</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>mitosis</subject><subject>Mitosis - physiology</subject><subject>mTOR</subject><subject>nuclear membrane</subject><subject>phosphorylation</subject><subject>Phosphorylation - physiology</subject><subject>RAPTOR</subject><subject>Signal Transduction - physiology</subject><subject>TFEB</subject><subject>ULK1</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUctu2zAQJIoEzaP5g6LQMRe5XD5E8VLAcNqkSIIAdXomZIqyaUiiSlIu8velYddJLsmBIDGcnd3ZQegz4AlgKL6uJ51rtWknBINM0CSBH9ApYClyBgU72r-JKPgJOgthjTEwXsqP6ISCoFRKcoqup33WPT78mkEeXT67uoVs_tdGvcruK9vHdEI2HaMbVtXyKZuPw-BNCNb1WT162y-zextdsOETOm6qNpiL_X2Ofv_4_ji7ye8ern_Opne55gWJeYG5KBccGi2IbOhCUgbCEKaFWAhC6rLkJS1rAUVlJMiSa0l0IyWwGsBoTc_Rt53uMC46U2vTR1-1avC2q_yTcpVVr396u1JLt1GFLBhwmgQu9wLe_RlNiKqzIa2xrXrjxqAIo5KWWAjxPpUC50QCgURlO6r2LgRvmsNEgNU2LrVWu7jUNq4tmsBU9uWlm0PR_3ye7Zq00401XgVtTa9Nbb3RUdXOvt3hH5Dvpwk</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Odle, Richard I.</creator><creator>Walker, Simon A.</creator><creator>Oxley, David</creator><creator>Kidger, Andrew M.</creator><creator>Balmanno, Kathryn</creator><creator>Gilley, Rebecca</creator><creator>Okkenhaug, Hanneke</creator><creator>Florey, Oliver</creator><creator>Ktistakis, Nicholas T.</creator><creator>Cook, Simon J.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20200116</creationdate><title>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</title><author>Odle, Richard I. ; Walker, Simon A. ; Oxley, David ; Kidger, Andrew M. ; Balmanno, Kathryn ; Gilley, Rebecca ; Okkenhaug, Hanneke ; Florey, Oliver ; Ktistakis, Nicholas T. ; Cook, Simon J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Animalia</topic><topic>ATG13</topic><topic>ATG14</topic><topic>autophagy</topic><topic>Autophagy - physiology</topic><topic>CDC2 Protein Kinase - metabolism</topic><topic>CDK1</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Female</topic><topic>genome</topic><topic>HCT116 Cells</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>HT29 Cells</topic><topic>Humans</topic><topic>lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>macroautophagy</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>mitosis</topic><topic>Mitosis - physiology</topic><topic>mTOR</topic><topic>nuclear membrane</topic><topic>phosphorylation</topic><topic>Phosphorylation - physiology</topic><topic>RAPTOR</topic><topic>Signal Transduction - physiology</topic><topic>TFEB</topic><topic>ULK1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odle, Richard I.</creatorcontrib><creatorcontrib>Walker, Simon A.</creatorcontrib><creatorcontrib>Oxley, David</creatorcontrib><creatorcontrib>Kidger, Andrew M.</creatorcontrib><creatorcontrib>Balmanno, Kathryn</creatorcontrib><creatorcontrib>Gilley, Rebecca</creatorcontrib><creatorcontrib>Okkenhaug, Hanneke</creatorcontrib><creatorcontrib>Florey, Oliver</creatorcontrib><creatorcontrib>Ktistakis, Nicholas T.</creatorcontrib><creatorcontrib>Cook, Simon J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odle, Richard I.</au><au>Walker, Simon A.</au><au>Oxley, David</au><au>Kidger, Andrew M.</au><au>Balmanno, Kathryn</au><au>Gilley, Rebecca</au><au>Okkenhaug, Hanneke</au><au>Florey, Oliver</au><au>Ktistakis, Nicholas T.</au><au>Cook, Simon J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-01-16</date><risdate>2020</risdate><volume>77</volume><issue>2</issue><spage>228</spage><epage>240.e7</epage><pages>228-240.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis. [Display omitted] •Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31733992</pmid><doi>10.1016/j.molcel.2019.10.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-01, Vol.77 (2), p.228-240.e7
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6964153
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects A549 Cells
Animalia
ATG13
ATG14
autophagy
Autophagy - physiology
CDC2 Protein Kinase - metabolism
CDK1
Cell Line
Cell Line, Tumor
Female
genome
HCT116 Cells
HEK293 Cells
HeLa Cells
HT29 Cells
Humans
lysosomes
Lysosomes - metabolism
macroautophagy
Male
Mechanistic Target of Rapamycin Complex 1 - metabolism
mitosis
Mitosis - physiology
mTOR
nuclear membrane
phosphorylation
Phosphorylation - physiology
RAPTOR
Signal Transduction - physiology
TFEB
ULK1
title An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20mTORC1-to-CDK1%20Switch%20Maintains%20Autophagy%20Suppression%20during%20Mitosis&rft.jtitle=Molecular%20cell&rft.au=Odle,%20Richard%20I.&rft.date=2020-01-16&rft.volume=77&rft.issue=2&rft.spage=228&rft.epage=240.e7&rft.pages=228-240.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2019.10.016&rft_dat=%3Cproquest_pubme%3E2439380777%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315529121&rft_id=info:pmid/31733992&rfr_iscdi=true