Loading…
An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis
Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 pho...
Saved in:
Published in: | Molecular cell 2020-01, Vol.77 (2), p.228-240.e7 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3 |
container_end_page | 240.e7 |
container_issue | 2 |
container_start_page | 228 |
container_title | Molecular cell |
container_volume | 77 |
creator | Odle, Richard I. Walker, Simon A. Oxley, David Kidger, Andrew M. Balmanno, Kathryn Gilley, Rebecca Okkenhaug, Hanneke Florey, Oliver Ktistakis, Nicholas T. Cook, Simon J. |
description | Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.
[Display omitted]
•Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy
Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability. |
doi_str_mv | 10.1016/j.molcel.2019.10.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6964153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276519307944</els_id><sourcerecordid>2439380777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</originalsourceid><addsrcrecordid>eNqFUctu2zAQJIoEzaP5g6LQMRe5XD5E8VLAcNqkSIIAdXomZIqyaUiiSlIu8velYddJLsmBIDGcnd3ZQegz4AlgKL6uJ51rtWknBINM0CSBH9ApYClyBgU72r-JKPgJOgthjTEwXsqP6ISCoFRKcoqup33WPT78mkEeXT67uoVs_tdGvcruK9vHdEI2HaMbVtXyKZuPw-BNCNb1WT162y-zextdsOETOm6qNpiL_X2Ofv_4_ji7ye8ern_Opne55gWJeYG5KBccGi2IbOhCUgbCEKaFWAhC6rLkJS1rAUVlJMiSa0l0IyWwGsBoTc_Rt53uMC46U2vTR1-1avC2q_yTcpVVr396u1JLt1GFLBhwmgQu9wLe_RlNiKqzIa2xrXrjxqAIo5KWWAjxPpUC50QCgURlO6r2LgRvmsNEgNU2LrVWu7jUNq4tmsBU9uWlm0PR_3ye7Zq00401XgVtTa9Nbb3RUdXOvt3hH5Dvpwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315529121</pqid></control><display><type>article</type><title>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Odle, Richard I. ; Walker, Simon A. ; Oxley, David ; Kidger, Andrew M. ; Balmanno, Kathryn ; Gilley, Rebecca ; Okkenhaug, Hanneke ; Florey, Oliver ; Ktistakis, Nicholas T. ; Cook, Simon J.</creator><creatorcontrib>Odle, Richard I. ; Walker, Simon A. ; Oxley, David ; Kidger, Andrew M. ; Balmanno, Kathryn ; Gilley, Rebecca ; Okkenhaug, Hanneke ; Florey, Oliver ; Ktistakis, Nicholas T. ; Cook, Simon J.</creatorcontrib><description>Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.
[Display omitted]
•Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy
Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2019.10.016</identifier><identifier>PMID: 31733992</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>A549 Cells ; Animalia ; ATG13 ; ATG14 ; autophagy ; Autophagy - physiology ; CDC2 Protein Kinase - metabolism ; CDK1 ; Cell Line ; Cell Line, Tumor ; Female ; genome ; HCT116 Cells ; HEK293 Cells ; HeLa Cells ; HT29 Cells ; Humans ; lysosomes ; Lysosomes - metabolism ; macroautophagy ; Male ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; mitosis ; Mitosis - physiology ; mTOR ; nuclear membrane ; phosphorylation ; Phosphorylation - physiology ; RAPTOR ; Signal Transduction - physiology ; TFEB ; ULK1</subject><ispartof>Molecular cell, 2020-01, Vol.77 (2), p.228-240.e7</ispartof><rights>2019</rights><rights>Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved.</rights><rights>Crown Copyright © 2019 Published by Elsevier Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</citedby><cites>FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31733992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odle, Richard I.</creatorcontrib><creatorcontrib>Walker, Simon A.</creatorcontrib><creatorcontrib>Oxley, David</creatorcontrib><creatorcontrib>Kidger, Andrew M.</creatorcontrib><creatorcontrib>Balmanno, Kathryn</creatorcontrib><creatorcontrib>Gilley, Rebecca</creatorcontrib><creatorcontrib>Okkenhaug, Hanneke</creatorcontrib><creatorcontrib>Florey, Oliver</creatorcontrib><creatorcontrib>Ktistakis, Nicholas T.</creatorcontrib><creatorcontrib>Cook, Simon J.</creatorcontrib><title>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.
[Display omitted]
•Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy
Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability.</description><subject>A549 Cells</subject><subject>Animalia</subject><subject>ATG13</subject><subject>ATG14</subject><subject>autophagy</subject><subject>Autophagy - physiology</subject><subject>CDC2 Protein Kinase - metabolism</subject><subject>CDK1</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Female</subject><subject>genome</subject><subject>HCT116 Cells</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>HT29 Cells</subject><subject>Humans</subject><subject>lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>macroautophagy</subject><subject>Male</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>mitosis</subject><subject>Mitosis - physiology</subject><subject>mTOR</subject><subject>nuclear membrane</subject><subject>phosphorylation</subject><subject>Phosphorylation - physiology</subject><subject>RAPTOR</subject><subject>Signal Transduction - physiology</subject><subject>TFEB</subject><subject>ULK1</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUctu2zAQJIoEzaP5g6LQMRe5XD5E8VLAcNqkSIIAdXomZIqyaUiiSlIu8velYddJLsmBIDGcnd3ZQegz4AlgKL6uJ51rtWknBINM0CSBH9ApYClyBgU72r-JKPgJOgthjTEwXsqP6ISCoFRKcoqup33WPT78mkEeXT67uoVs_tdGvcruK9vHdEI2HaMbVtXyKZuPw-BNCNb1WT162y-zextdsOETOm6qNpiL_X2Ofv_4_ji7ye8ern_Opne55gWJeYG5KBccGi2IbOhCUgbCEKaFWAhC6rLkJS1rAUVlJMiSa0l0IyWwGsBoTc_Rt53uMC46U2vTR1-1avC2q_yTcpVVr396u1JLt1GFLBhwmgQu9wLe_RlNiKqzIa2xrXrjxqAIo5KWWAjxPpUC50QCgURlO6r2LgRvmsNEgNU2LrVWu7jUNq4tmsBU9uWlm0PR_3ye7Zq00401XgVtTa9Nbb3RUdXOvt3hH5Dvpwk</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Odle, Richard I.</creator><creator>Walker, Simon A.</creator><creator>Oxley, David</creator><creator>Kidger, Andrew M.</creator><creator>Balmanno, Kathryn</creator><creator>Gilley, Rebecca</creator><creator>Okkenhaug, Hanneke</creator><creator>Florey, Oliver</creator><creator>Ktistakis, Nicholas T.</creator><creator>Cook, Simon J.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20200116</creationdate><title>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</title><author>Odle, Richard I. ; Walker, Simon A. ; Oxley, David ; Kidger, Andrew M. ; Balmanno, Kathryn ; Gilley, Rebecca ; Okkenhaug, Hanneke ; Florey, Oliver ; Ktistakis, Nicholas T. ; Cook, Simon J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Animalia</topic><topic>ATG13</topic><topic>ATG14</topic><topic>autophagy</topic><topic>Autophagy - physiology</topic><topic>CDC2 Protein Kinase - metabolism</topic><topic>CDK1</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Female</topic><topic>genome</topic><topic>HCT116 Cells</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>HT29 Cells</topic><topic>Humans</topic><topic>lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>macroautophagy</topic><topic>Male</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>mitosis</topic><topic>Mitosis - physiology</topic><topic>mTOR</topic><topic>nuclear membrane</topic><topic>phosphorylation</topic><topic>Phosphorylation - physiology</topic><topic>RAPTOR</topic><topic>Signal Transduction - physiology</topic><topic>TFEB</topic><topic>ULK1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odle, Richard I.</creatorcontrib><creatorcontrib>Walker, Simon A.</creatorcontrib><creatorcontrib>Oxley, David</creatorcontrib><creatorcontrib>Kidger, Andrew M.</creatorcontrib><creatorcontrib>Balmanno, Kathryn</creatorcontrib><creatorcontrib>Gilley, Rebecca</creatorcontrib><creatorcontrib>Okkenhaug, Hanneke</creatorcontrib><creatorcontrib>Florey, Oliver</creatorcontrib><creatorcontrib>Ktistakis, Nicholas T.</creatorcontrib><creatorcontrib>Cook, Simon J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odle, Richard I.</au><au>Walker, Simon A.</au><au>Oxley, David</au><au>Kidger, Andrew M.</au><au>Balmanno, Kathryn</au><au>Gilley, Rebecca</au><au>Okkenhaug, Hanneke</au><au>Florey, Oliver</au><au>Ktistakis, Nicholas T.</au><au>Cook, Simon J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-01-16</date><risdate>2020</risdate><volume>77</volume><issue>2</issue><spage>228</spage><epage>240.e7</epage><pages>228-240.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.
[Display omitted]
•Autophagy initiation is repressed during mitosis, even during nutrient deprivation•RAPTOR phosphorylation in mitosis prevents mTORC1 localization to lysosomes•mTORC1 is inhibited during mitosis•CDK1 phosphorylates autophagy regulators at mTORC1 sites to repress autophagy
Odle and colleagues show that while autophagy is usually repressed by the nutrient-responsive mTORC1 kinase complex, this is not the case during mitosis. Instead, CCNB1-CDK1 catalyzes phosphorylation at the same repressive sites, taking over the role of repressing autophagy regulators. Thus, repression of autophagy is ensured regardless of nutrient availability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31733992</pmid><doi>10.1016/j.molcel.2019.10.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2020-01, Vol.77 (2), p.228-240.e7 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6964153 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | A549 Cells Animalia ATG13 ATG14 autophagy Autophagy - physiology CDC2 Protein Kinase - metabolism CDK1 Cell Line Cell Line, Tumor Female genome HCT116 Cells HEK293 Cells HeLa Cells HT29 Cells Humans lysosomes Lysosomes - metabolism macroautophagy Male Mechanistic Target of Rapamycin Complex 1 - metabolism mitosis Mitosis - physiology mTOR nuclear membrane phosphorylation Phosphorylation - physiology RAPTOR Signal Transduction - physiology TFEB ULK1 |
title | An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20mTORC1-to-CDK1%20Switch%20Maintains%20Autophagy%20Suppression%20during%20Mitosis&rft.jtitle=Molecular%20cell&rft.au=Odle,%20Richard%20I.&rft.date=2020-01-16&rft.volume=77&rft.issue=2&rft.spage=228&rft.epage=240.e7&rft.pages=228-240.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2019.10.016&rft_dat=%3Cproquest_pubme%3E2439380777%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-60578b51fc729f3b93417e24c77b722d885838d716ae91985c92cf9914d11ecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315529121&rft_id=info:pmid/31733992&rfr_iscdi=true |