Loading…
Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting
Lead halide perovskite solar cells are notoriously moisture-sensitive, but recent encapsulation strategies have demonstrated their potential application as photoelectrodes in aqueous solution. However, perovskite photoelectrodes rely on precious metal co-catalysts, and their combination with biologi...
Saved in:
Published in: | ACS energy letters 2020-01, Vol.5 (1), p.232-237 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lead halide perovskite solar cells are notoriously moisture-sensitive, but recent encapsulation strategies have demonstrated their potential application as photoelectrodes in aqueous solution. However, perovskite photoelectrodes rely on precious metal co-catalysts, and their combination with biological materials remains elusive in integrated devices. Here, we interface [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough, a highly active enzyme for H2 generation, with a triple cation mixed halide perovskite. The perovskite–hydrogenase photoelectrode produces a photocurrent of −5 mA cm–2 at 0 V vs RHE during AM1.5G irradiation, is stable for 12 h and the hydrogenase exhibits a turnover number of 1.9 × 106. The positive onset potential of +0.8 V vs RHE allows its combination with a BiVO4 water oxidation photoanode to give a self-sustaining, bias-free photoelectrochemical tandem system for overall water splitting (solar-to-hydrogen efficiency of 1.1%). This work demonstrates the compatibility of immersed perovskite elements with biological catalysts to produce hybrid photoelectrodes with benchmark performance, which establishes their utility in semiartificial photosynthesis. |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.9b02437 |