Loading…
Bacterial Metabolism and Antibiotic Efficacy
Antibiotics target energy-consuming processes. As such, perturbations to bacterial metabolic homeostasis are significant consequences of treatment. Here, we describe three postulates that collectively define antibiotic efficacy in the context of bacterial metabolism: (1) antibiotics alter the metabo...
Saved in:
Published in: | Cell metabolism 2019-08, Vol.30 (2), p.251-259 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antibiotics target energy-consuming processes. As such, perturbations to bacterial metabolic homeostasis are significant consequences of treatment. Here, we describe three postulates that collectively define antibiotic efficacy in the context of bacterial metabolism: (1) antibiotics alter the metabolic state of bacteria, which contributes to the resulting death or stasis; (2) the metabolic state of bacteria influences their susceptibility to antibiotics; and (3) antibiotic efficacy can be enhanced by altering the metabolic state of bacteria. Altogether, we aim to emphasize the close relationship between bacterial metabolism and antibiotic efficacy as well as propose areas of exploration to develop novel antibiotics that optimally exploit bacterial metabolic networks.
The metabolic state of bacteria significantly contributes to the efficacy of antibiotics. In this Perspective, Stokes et al. highlight the close relationship between bacterial cell metabolism and antibiotic efficacy, leveraging prior observations to describe areas for further exploration, with the goal of developing next-generation antibiotics that can optimally exploit the complex metabolic networks of bacteria. |
---|---|
ISSN: | 1550-4131 1932-7420 |
DOI: | 10.1016/j.cmet.2019.06.009 |