Loading…

Bacterial Metabolism and Antibiotic Efficacy

Antibiotics target energy-consuming processes. As such, perturbations to bacterial metabolic homeostasis are significant consequences of treatment. Here, we describe three postulates that collectively define antibiotic efficacy in the context of bacterial metabolism: (1) antibiotics alter the metabo...

Full description

Saved in:
Bibliographic Details
Published in:Cell metabolism 2019-08, Vol.30 (2), p.251-259
Main Authors: Stokes, Jonathan M., Lopatkin, Allison J., Lobritz, Michael A., Collins, James J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antibiotics target energy-consuming processes. As such, perturbations to bacterial metabolic homeostasis are significant consequences of treatment. Here, we describe three postulates that collectively define antibiotic efficacy in the context of bacterial metabolism: (1) antibiotics alter the metabolic state of bacteria, which contributes to the resulting death or stasis; (2) the metabolic state of bacteria influences their susceptibility to antibiotics; and (3) antibiotic efficacy can be enhanced by altering the metabolic state of bacteria. Altogether, we aim to emphasize the close relationship between bacterial metabolism and antibiotic efficacy as well as propose areas of exploration to develop novel antibiotics that optimally exploit bacterial metabolic networks. The metabolic state of bacteria significantly contributes to the efficacy of antibiotics. In this Perspective, Stokes et al. highlight the close relationship between bacterial cell metabolism and antibiotic efficacy, leveraging prior observations to describe areas for further exploration, with the goal of developing next-generation antibiotics that can optimally exploit the complex metabolic networks of bacteria.
ISSN:1550-4131
1932-7420
DOI:10.1016/j.cmet.2019.06.009