Loading…
One-step regression and classification with cross-point resistive memory arrays
Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge...
Saved in:
Published in: | Science advances 2020-01, Vol.6 (5), p.eaay2378-eaay2378 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803 |
container_end_page | eaay2378 |
container_issue | 5 |
container_start_page | eaay2378 |
container_title | Science advances |
container_volume | 6 |
creator | Sun, Zhong Pedretti, Giacomo Bricalli, Alessandro Ielmini, Daniele |
description | Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition. |
doi_str_mv | 10.1126/sciadv.aay2378 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356615946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</originalsourceid><addsrcrecordid>eNpVkT1PwzAQhi0EolXpyogysqT4u_GChCq-pEpdulsXx2mNkjjYaVH-PSktqEznOz_33tkvQrcEzwih8iEaB8V-BtBTNs8u0HgIIqWCZ5dn5xGaxviBMSZcSkHUNRoxiiVnnI7RatXYNHa2TYLdBBuj800CTZGYCoakdAa6Q-nLddvEBB9j2nrXdAMeXezc3ia1rX3oEwgB-niDrkqoop2e4gStX57Xi7d0uXp9XzwtU8MU7tLCcGCYMsnKXArGcq7sPOMGBDalyTKZKzOsPh8YSmWGgQkC0phcKptlmE3Q41G23eW1LYxtugCVboOrIfTag9P_bxq31Ru_11IpTjEfBO5PAsF_7mzsdO2isVUFjfW7qCkTUhKhuBzQ2RH9eX6w5d8YgvXBB330QZ98GBruzpf7w39_nX0DMbGHnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356615946</pqid></control><display><type>article</type><title>One-step regression and classification with cross-point resistive memory arrays</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Sun, Zhong ; Pedretti, Giacomo ; Bricalli, Alessandro ; Ielmini, Daniele</creator><creatorcontrib>Sun, Zhong ; Pedretti, Giacomo ; Bricalli, Alessandro ; Ielmini, Daniele</creatorcontrib><description>Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aay2378</identifier><identifier>PMID: 32064342</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; SciAdv r-articles</subject><ispartof>Science advances, 2020-01, Vol.6 (5), p.eaay2378-eaay2378</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</citedby><cites>FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</cites><orcidid>0000-0003-1856-0279 ; 0000-0002-1853-1614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994204/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994204/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32064342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhong</creatorcontrib><creatorcontrib>Pedretti, Giacomo</creatorcontrib><creatorcontrib>Bricalli, Alessandro</creatorcontrib><creatorcontrib>Ielmini, Daniele</creatorcontrib><title>One-step regression and classification with cross-point resistive memory arrays</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.</description><subject>Applied Sciences and Engineering</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkT1PwzAQhi0EolXpyogysqT4u_GChCq-pEpdulsXx2mNkjjYaVH-PSktqEznOz_33tkvQrcEzwih8iEaB8V-BtBTNs8u0HgIIqWCZ5dn5xGaxviBMSZcSkHUNRoxiiVnnI7RatXYNHa2TYLdBBuj800CTZGYCoakdAa6Q-nLddvEBB9j2nrXdAMeXezc3ia1rX3oEwgB-niDrkqoop2e4gStX57Xi7d0uXp9XzwtU8MU7tLCcGCYMsnKXArGcq7sPOMGBDalyTKZKzOsPh8YSmWGgQkC0phcKptlmE3Q41G23eW1LYxtugCVboOrIfTag9P_bxq31Ru_11IpTjEfBO5PAsF_7mzsdO2isVUFjfW7qCkTUhKhuBzQ2RH9eX6w5d8YgvXBB330QZ98GBruzpf7w39_nX0DMbGHnA</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Sun, Zhong</creator><creator>Pedretti, Giacomo</creator><creator>Bricalli, Alessandro</creator><creator>Ielmini, Daniele</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1856-0279</orcidid><orcidid>https://orcid.org/0000-0002-1853-1614</orcidid></search><sort><creationdate>20200131</creationdate><title>One-step regression and classification with cross-point resistive memory arrays</title><author>Sun, Zhong ; Pedretti, Giacomo ; Bricalli, Alessandro ; Ielmini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied Sciences and Engineering</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhong</creatorcontrib><creatorcontrib>Pedretti, Giacomo</creatorcontrib><creatorcontrib>Bricalli, Alessandro</creatorcontrib><creatorcontrib>Ielmini, Daniele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhong</au><au>Pedretti, Giacomo</au><au>Bricalli, Alessandro</au><au>Ielmini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step regression and classification with cross-point resistive memory arrays</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-01-31</date><risdate>2020</risdate><volume>6</volume><issue>5</issue><spage>eaay2378</spage><epage>eaay2378</epage><pages>eaay2378-eaay2378</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>32064342</pmid><doi>10.1126/sciadv.aay2378</doi><orcidid>https://orcid.org/0000-0003-1856-0279</orcidid><orcidid>https://orcid.org/0000-0002-1853-1614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2020-01, Vol.6 (5), p.eaay2378-eaay2378 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994204 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Applied Sciences and Engineering SciAdv r-articles |
title | One-step regression and classification with cross-point resistive memory arrays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20regression%20and%20classification%20with%20cross-point%20resistive%20memory%20arrays&rft.jtitle=Science%20advances&rft.au=Sun,%20Zhong&rft.date=2020-01-31&rft.volume=6&rft.issue=5&rft.spage=eaay2378&rft.epage=eaay2378&rft.pages=eaay2378-eaay2378&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aay2378&rft_dat=%3Cproquest_pubme%3E2356615946%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2356615946&rft_id=info:pmid/32064342&rfr_iscdi=true |