Loading…

One-step regression and classification with cross-point resistive memory arrays

Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-01, Vol.6 (5), p.eaay2378-eaay2378
Main Authors: Sun, Zhong, Pedretti, Giacomo, Bricalli, Alessandro, Ielmini, Daniele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803
cites cdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803
container_end_page eaay2378
container_issue 5
container_start_page eaay2378
container_title Science advances
container_volume 6
creator Sun, Zhong
Pedretti, Giacomo
Bricalli, Alessandro
Ielmini, Daniele
description Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.
doi_str_mv 10.1126/sciadv.aay2378
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356615946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</originalsourceid><addsrcrecordid>eNpVkT1PwzAQhi0EolXpyogysqT4u_GChCq-pEpdulsXx2mNkjjYaVH-PSktqEznOz_33tkvQrcEzwih8iEaB8V-BtBTNs8u0HgIIqWCZ5dn5xGaxviBMSZcSkHUNRoxiiVnnI7RatXYNHa2TYLdBBuj800CTZGYCoakdAa6Q-nLddvEBB9j2nrXdAMeXezc3ia1rX3oEwgB-niDrkqoop2e4gStX57Xi7d0uXp9XzwtU8MU7tLCcGCYMsnKXArGcq7sPOMGBDalyTKZKzOsPh8YSmWGgQkC0phcKptlmE3Q41G23eW1LYxtugCVboOrIfTag9P_bxq31Ru_11IpTjEfBO5PAsF_7mzsdO2isVUFjfW7qCkTUhKhuBzQ2RH9eX6w5d8YgvXBB330QZ98GBruzpf7w39_nX0DMbGHnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356615946</pqid></control><display><type>article</type><title>One-step regression and classification with cross-point resistive memory arrays</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Sun, Zhong ; Pedretti, Giacomo ; Bricalli, Alessandro ; Ielmini, Daniele</creator><creatorcontrib>Sun, Zhong ; Pedretti, Giacomo ; Bricalli, Alessandro ; Ielmini, Daniele</creatorcontrib><description>Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aay2378</identifier><identifier>PMID: 32064342</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; SciAdv r-articles</subject><ispartof>Science advances, 2020-01, Vol.6 (5), p.eaay2378-eaay2378</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</citedby><cites>FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</cites><orcidid>0000-0003-1856-0279 ; 0000-0002-1853-1614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994204/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994204/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32064342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhong</creatorcontrib><creatorcontrib>Pedretti, Giacomo</creatorcontrib><creatorcontrib>Bricalli, Alessandro</creatorcontrib><creatorcontrib>Ielmini, Daniele</creatorcontrib><title>One-step regression and classification with cross-point resistive memory arrays</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.</description><subject>Applied Sciences and Engineering</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkT1PwzAQhi0EolXpyogysqT4u_GChCq-pEpdulsXx2mNkjjYaVH-PSktqEznOz_33tkvQrcEzwih8iEaB8V-BtBTNs8u0HgIIqWCZ5dn5xGaxviBMSZcSkHUNRoxiiVnnI7RatXYNHa2TYLdBBuj800CTZGYCoakdAa6Q-nLddvEBB9j2nrXdAMeXezc3ia1rX3oEwgB-niDrkqoop2e4gStX57Xi7d0uXp9XzwtU8MU7tLCcGCYMsnKXArGcq7sPOMGBDalyTKZKzOsPh8YSmWGgQkC0phcKptlmE3Q41G23eW1LYxtugCVboOrIfTag9P_bxq31Ru_11IpTjEfBO5PAsF_7mzsdO2isVUFjfW7qCkTUhKhuBzQ2RH9eX6w5d8YgvXBB330QZ98GBruzpf7w39_nX0DMbGHnA</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Sun, Zhong</creator><creator>Pedretti, Giacomo</creator><creator>Bricalli, Alessandro</creator><creator>Ielmini, Daniele</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1856-0279</orcidid><orcidid>https://orcid.org/0000-0002-1853-1614</orcidid></search><sort><creationdate>20200131</creationdate><title>One-step regression and classification with cross-point resistive memory arrays</title><author>Sun, Zhong ; Pedretti, Giacomo ; Bricalli, Alessandro ; Ielmini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied Sciences and Engineering</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhong</creatorcontrib><creatorcontrib>Pedretti, Giacomo</creatorcontrib><creatorcontrib>Bricalli, Alessandro</creatorcontrib><creatorcontrib>Ielmini, Daniele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhong</au><au>Pedretti, Giacomo</au><au>Bricalli, Alessandro</au><au>Ielmini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step regression and classification with cross-point resistive memory arrays</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-01-31</date><risdate>2020</risdate><volume>6</volume><issue>5</issue><spage>eaay2378</spage><epage>eaay2378</epage><pages>eaay2378-eaay2378</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore's law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>32064342</pmid><doi>10.1126/sciadv.aay2378</doi><orcidid>https://orcid.org/0000-0003-1856-0279</orcidid><orcidid>https://orcid.org/0000-0002-1853-1614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-01, Vol.6 (5), p.eaay2378-eaay2378
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994204
source American Association for the Advancement of Science; PubMed Central
subjects Applied Sciences and Engineering
SciAdv r-articles
title One-step regression and classification with cross-point resistive memory arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20regression%20and%20classification%20with%20cross-point%20resistive%20memory%20arrays&rft.jtitle=Science%20advances&rft.au=Sun,%20Zhong&rft.date=2020-01-31&rft.volume=6&rft.issue=5&rft.spage=eaay2378&rft.epage=eaay2378&rft.pages=eaay2378-eaay2378&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aay2378&rft_dat=%3Cproquest_pubme%3E2356615946%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-dc4a302363fb6533b49e784ca50cfc886b9c548730222680a351a6ccb69e8803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2356615946&rft_id=info:pmid/32064342&rfr_iscdi=true