Loading…

Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages

The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, tradit...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-01, Vol.117 (4), p.1951-1961
Main Authors: Peng, Huan, Borg, Raymond E., Dow, Liam P., Pruitt, Beth L., Chen, Irene A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13
cites cdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13
container_end_page 1961
container_issue 4
container_start_page 1951
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Peng, Huan
Borg, Raymond E.
Dow, Liam P.
Pruitt, Beth L.
Chen, Irene A.
description The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.
doi_str_mv 10.1073/pnas.1913234117
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897791</jstor_id><sourcerecordid>26897791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</originalsourceid><addsrcrecordid>eNpVUU2LFDEUDKK44-jZkxLw3Lt5nfTXRZDBL1jYi3sOr5PXPRl6Om2SEebkXzezs47uIYS8qldVoRh7C-IaRCNvlhnjNXQgS6kAmmdsBaKDoladeM5WQpRN0apSXbFXMe6EEF3VipfsSkInS6VgxX5v_JyCnyayfNniSDxtKeBy5P0xD3zyp_ceJ479hMn5mfuBx4WMG5zhPZpEwWX4YUSRH6KbRz76yfIZZx-8jTxhGCllh6xptm6fN8zZLb5mLwacIr15vNfs_svnH5tvxe3d1--bT7eFUUqmom1t2UqoEKwcBiPJDLWpK0LTG1S26qkhhFYOhuoTj4SwtqmpEQiytiDX7ONZdzn0e7KG8q9x0ktwewxH7dHpp8jstnr0v3Tddaprmizw4VEg-J8Hiknv_CHMObMuZSWglJDPmt2cWSb4GAMNFwcQ-tSYPjWm_zWWN97_H-zC_1tRJrw7E3Yx-XDBy7rNsbLOH9E9oI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350123112</pqid></control><display><type>article</type><title>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Peng, Huan ; Borg, Raymond E. ; Dow, Liam P. ; Pruitt, Beth L. ; Chen, Irene A.</creator><creatorcontrib>Peng, Huan ; Borg, Raymond E. ; Dow, Liam P. ; Pruitt, Beth L. ; Chen, Irene A.</creatorcontrib><description>The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1913234117</identifier><identifier>PMID: 31932441</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Animals ; Anti-Bacterial Agents - administration &amp; dosage ; Antiinfectives and antibacterials ; Bacteria ; Bacteriophages - physiology ; Biofilms ; Biological evolution ; Biological Sciences ; Damage localization ; Dogs ; Drug Resistance, Multiple, Bacterial ; E coli ; Epithelial cells ; Gold ; Gold - chemistry ; Humans ; Hyperthermia, Induced ; Infrared radiation ; Infrared Rays ; Irradiation ; Madin Darby Canine Kidney Cells ; Metal Nanoparticles - chemistry ; Nanorods ; Nanotubes - chemistry ; Pathogens ; Phage Therapy - methods ; Phages ; Physical Sciences ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - physiology ; Pseudomonas Infections - microbiology ; Pseudomonas Infections - therapy ; Radiation ; Radiation damage ; Reagents ; Replication ; Therapy ; Viscosity ; Viscosity measurement ; Waterborne diseases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (4), p.1951-1961</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jan 28, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</citedby><cites>FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</cites><orcidid>0000-0001-6040-7927 ; 0000-0002-4861-2124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897791$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897791$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Borg, Raymond E.</creatorcontrib><creatorcontrib>Dow, Liam P.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Chen, Irene A.</creatorcontrib><title>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.</description><subject>Ablation</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - administration &amp; dosage</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Bacteriophages - physiology</subject><subject>Biofilms</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Damage localization</subject><subject>Dogs</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>E coli</subject><subject>Epithelial cells</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>Infrared radiation</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanorods</subject><subject>Nanotubes - chemistry</subject><subject>Pathogens</subject><subject>Phage Therapy - methods</subject><subject>Phages</subject><subject>Physical Sciences</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Pseudomonas Infections - microbiology</subject><subject>Pseudomonas Infections - therapy</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Reagents</subject><subject>Replication</subject><subject>Therapy</subject><subject>Viscosity</subject><subject>Viscosity measurement</subject><subject>Waterborne diseases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUU2LFDEUDKK44-jZkxLw3Lt5nfTXRZDBL1jYi3sOr5PXPRl6Om2SEebkXzezs47uIYS8qldVoRh7C-IaRCNvlhnjNXQgS6kAmmdsBaKDoladeM5WQpRN0apSXbFXMe6EEF3VipfsSkInS6VgxX5v_JyCnyayfNniSDxtKeBy5P0xD3zyp_ceJ479hMn5mfuBx4WMG5zhPZpEwWX4YUSRH6KbRz76yfIZZx-8jTxhGCllh6xptm6fN8zZLb5mLwacIr15vNfs_svnH5tvxe3d1--bT7eFUUqmom1t2UqoEKwcBiPJDLWpK0LTG1S26qkhhFYOhuoTj4SwtqmpEQiytiDX7ONZdzn0e7KG8q9x0ktwewxH7dHpp8jstnr0v3Tddaprmizw4VEg-J8Hiknv_CHMObMuZSWglJDPmt2cWSb4GAMNFwcQ-tSYPjWm_zWWN97_H-zC_1tRJrw7E3Yx-XDBy7rNsbLOH9E9oI8</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Peng, Huan</creator><creator>Borg, Raymond E.</creator><creator>Dow, Liam P.</creator><creator>Pruitt, Beth L.</creator><creator>Chen, Irene A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6040-7927</orcidid><orcidid>https://orcid.org/0000-0002-4861-2124</orcidid></search><sort><creationdate>20200128</creationdate><title>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</title><author>Peng, Huan ; Borg, Raymond E. ; Dow, Liam P. ; Pruitt, Beth L. ; Chen, Irene A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - administration &amp; dosage</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Bacteriophages - physiology</topic><topic>Biofilms</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Damage localization</topic><topic>Dogs</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>E coli</topic><topic>Epithelial cells</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>Infrared radiation</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanorods</topic><topic>Nanotubes - chemistry</topic><topic>Pathogens</topic><topic>Phage Therapy - methods</topic><topic>Phages</topic><topic>Physical Sciences</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Pseudomonas Infections - microbiology</topic><topic>Pseudomonas Infections - therapy</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Reagents</topic><topic>Replication</topic><topic>Therapy</topic><topic>Viscosity</topic><topic>Viscosity measurement</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Borg, Raymond E.</creatorcontrib><creatorcontrib>Dow, Liam P.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Chen, Irene A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Huan</au><au>Borg, Raymond E.</au><au>Dow, Liam P.</au><au>Pruitt, Beth L.</au><au>Chen, Irene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>117</volume><issue>4</issue><spage>1951</spage><epage>1961</epage><pages>1951-1961</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31932441</pmid><doi>10.1073/pnas.1913234117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6040-7927</orcidid><orcidid>https://orcid.org/0000-0002-4861-2124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (4), p.1951-1961
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994977
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Ablation
Animals
Anti-Bacterial Agents - administration & dosage
Antiinfectives and antibacterials
Bacteria
Bacteriophages - physiology
Biofilms
Biological evolution
Biological Sciences
Damage localization
Dogs
Drug Resistance, Multiple, Bacterial
E coli
Epithelial cells
Gold
Gold - chemistry
Humans
Hyperthermia, Induced
Infrared radiation
Infrared Rays
Irradiation
Madin Darby Canine Kidney Cells
Metal Nanoparticles - chemistry
Nanorods
Nanotubes - chemistry
Pathogens
Phage Therapy - methods
Phages
Physical Sciences
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
Pseudomonas Infections - microbiology
Pseudomonas Infections - therapy
Radiation
Radiation damage
Reagents
Replication
Therapy
Viscosity
Viscosity measurement
Waterborne diseases
title Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20phage%20therapy%20by%20photothermal%20ablation%20of%20specific%20bacterial%20species%20using%20gold%20nanorods%20targeted%20by%20chimeric%20phages&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Peng,%20Huan&rft.date=2020-01-28&rft.volume=117&rft.issue=4&rft.spage=1951&rft.epage=1961&rft.pages=1951-1961&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1913234117&rft_dat=%3Cjstor_pubme%3E26897791%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350123112&rft_id=info:pmid/31932441&rft_jstor_id=26897791&rfr_iscdi=true