Loading…
Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages
The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, tradit...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2020-01, Vol.117 (4), p.1951-1961 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13 |
container_end_page | 1961 |
container_issue | 4 |
container_start_page | 1951 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Peng, Huan Borg, Raymond E. Dow, Liam P. Pruitt, Beth L. Chen, Irene A. |
description | The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells. |
doi_str_mv | 10.1073/pnas.1913234117 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26897791</jstor_id><sourcerecordid>26897791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</originalsourceid><addsrcrecordid>eNpVUU2LFDEUDKK44-jZkxLw3Lt5nfTXRZDBL1jYi3sOr5PXPRl6Om2SEebkXzezs47uIYS8qldVoRh7C-IaRCNvlhnjNXQgS6kAmmdsBaKDoladeM5WQpRN0apSXbFXMe6EEF3VipfsSkInS6VgxX5v_JyCnyayfNniSDxtKeBy5P0xD3zyp_ceJ479hMn5mfuBx4WMG5zhPZpEwWX4YUSRH6KbRz76yfIZZx-8jTxhGCllh6xptm6fN8zZLb5mLwacIr15vNfs_svnH5tvxe3d1--bT7eFUUqmom1t2UqoEKwcBiPJDLWpK0LTG1S26qkhhFYOhuoTj4SwtqmpEQiytiDX7ONZdzn0e7KG8q9x0ktwewxH7dHpp8jstnr0v3Tddaprmizw4VEg-J8Hiknv_CHMObMuZSWglJDPmt2cWSb4GAMNFwcQ-tSYPjWm_zWWN97_H-zC_1tRJrw7E3Yx-XDBy7rNsbLOH9E9oI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350123112</pqid></control><display><type>article</type><title>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Peng, Huan ; Borg, Raymond E. ; Dow, Liam P. ; Pruitt, Beth L. ; Chen, Irene A.</creator><creatorcontrib>Peng, Huan ; Borg, Raymond E. ; Dow, Liam P. ; Pruitt, Beth L. ; Chen, Irene A.</creatorcontrib><description>The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1913234117</identifier><identifier>PMID: 31932441</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Animals ; Anti-Bacterial Agents - administration & dosage ; Antiinfectives and antibacterials ; Bacteria ; Bacteriophages - physiology ; Biofilms ; Biological evolution ; Biological Sciences ; Damage localization ; Dogs ; Drug Resistance, Multiple, Bacterial ; E coli ; Epithelial cells ; Gold ; Gold - chemistry ; Humans ; Hyperthermia, Induced ; Infrared radiation ; Infrared Rays ; Irradiation ; Madin Darby Canine Kidney Cells ; Metal Nanoparticles - chemistry ; Nanorods ; Nanotubes - chemistry ; Pathogens ; Phage Therapy - methods ; Phages ; Physical Sciences ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - physiology ; Pseudomonas Infections - microbiology ; Pseudomonas Infections - therapy ; Radiation ; Radiation damage ; Reagents ; Replication ; Therapy ; Viscosity ; Viscosity measurement ; Waterborne diseases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (4), p.1951-1961</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jan 28, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</citedby><cites>FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</cites><orcidid>0000-0001-6040-7927 ; 0000-0002-4861-2124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26897791$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26897791$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Borg, Raymond E.</creatorcontrib><creatorcontrib>Dow, Liam P.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Chen, Irene A.</creatorcontrib><title>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.</description><subject>Ablation</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - administration & dosage</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Bacteriophages - physiology</subject><subject>Biofilms</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Damage localization</subject><subject>Dogs</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>E coli</subject><subject>Epithelial cells</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>Infrared radiation</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanorods</subject><subject>Nanotubes - chemistry</subject><subject>Pathogens</subject><subject>Phage Therapy - methods</subject><subject>Phages</subject><subject>Physical Sciences</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Pseudomonas Infections - microbiology</subject><subject>Pseudomonas Infections - therapy</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Reagents</subject><subject>Replication</subject><subject>Therapy</subject><subject>Viscosity</subject><subject>Viscosity measurement</subject><subject>Waterborne diseases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUU2LFDEUDKK44-jZkxLw3Lt5nfTXRZDBL1jYi3sOr5PXPRl6Om2SEebkXzezs47uIYS8qldVoRh7C-IaRCNvlhnjNXQgS6kAmmdsBaKDoladeM5WQpRN0apSXbFXMe6EEF3VipfsSkInS6VgxX5v_JyCnyayfNniSDxtKeBy5P0xD3zyp_ceJ479hMn5mfuBx4WMG5zhPZpEwWX4YUSRH6KbRz76yfIZZx-8jTxhGCllh6xptm6fN8zZLb5mLwacIr15vNfs_svnH5tvxe3d1--bT7eFUUqmom1t2UqoEKwcBiPJDLWpK0LTG1S26qkhhFYOhuoTj4SwtqmpEQiytiDX7ONZdzn0e7KG8q9x0ktwewxH7dHpp8jstnr0v3Tddaprmizw4VEg-J8Hiknv_CHMObMuZSWglJDPmt2cWSb4GAMNFwcQ-tSYPjWm_zWWN97_H-zC_1tRJrw7E3Yx-XDBy7rNsbLOH9E9oI8</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Peng, Huan</creator><creator>Borg, Raymond E.</creator><creator>Dow, Liam P.</creator><creator>Pruitt, Beth L.</creator><creator>Chen, Irene A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6040-7927</orcidid><orcidid>https://orcid.org/0000-0002-4861-2124</orcidid></search><sort><creationdate>20200128</creationdate><title>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</title><author>Peng, Huan ; Borg, Raymond E. ; Dow, Liam P. ; Pruitt, Beth L. ; Chen, Irene A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - administration & dosage</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Bacteriophages - physiology</topic><topic>Biofilms</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Damage localization</topic><topic>Dogs</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>E coli</topic><topic>Epithelial cells</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>Infrared radiation</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanorods</topic><topic>Nanotubes - chemistry</topic><topic>Pathogens</topic><topic>Phage Therapy - methods</topic><topic>Phages</topic><topic>Physical Sciences</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Pseudomonas Infections - microbiology</topic><topic>Pseudomonas Infections - therapy</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Reagents</topic><topic>Replication</topic><topic>Therapy</topic><topic>Viscosity</topic><topic>Viscosity measurement</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Huan</creatorcontrib><creatorcontrib>Borg, Raymond E.</creatorcontrib><creatorcontrib>Dow, Liam P.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Chen, Irene A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Huan</au><au>Borg, Raymond E.</au><au>Dow, Liam P.</au><au>Pruitt, Beth L.</au><au>Chen, Irene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>117</volume><issue>4</issue><spage>1951</spage><epage>1961</epage><pages>1951-1961</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris. The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31932441</pmid><doi>10.1073/pnas.1913234117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6040-7927</orcidid><orcidid>https://orcid.org/0000-0002-4861-2124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-01, Vol.117 (4), p.1951-1961 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6994977 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Ablation Animals Anti-Bacterial Agents - administration & dosage Antiinfectives and antibacterials Bacteria Bacteriophages - physiology Biofilms Biological evolution Biological Sciences Damage localization Dogs Drug Resistance, Multiple, Bacterial E coli Epithelial cells Gold Gold - chemistry Humans Hyperthermia, Induced Infrared radiation Infrared Rays Irradiation Madin Darby Canine Kidney Cells Metal Nanoparticles - chemistry Nanorods Nanotubes - chemistry Pathogens Phage Therapy - methods Phages Physical Sciences Pseudomonas aeruginosa Pseudomonas aeruginosa - physiology Pseudomonas Infections - microbiology Pseudomonas Infections - therapy Radiation Radiation damage Reagents Replication Therapy Viscosity Viscosity measurement Waterborne diseases |
title | Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20phage%20therapy%20by%20photothermal%20ablation%20of%20specific%20bacterial%20species%20using%20gold%20nanorods%20targeted%20by%20chimeric%20phages&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Peng,%20Huan&rft.date=2020-01-28&rft.volume=117&rft.issue=4&rft.spage=1951&rft.epage=1961&rft.pages=1951-1961&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1913234117&rft_dat=%3Cjstor_pubme%3E26897791%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-88d28315a1d3ffc3ecf6c65eacbca4d5be7ea183fce68315e00dd76e70a136d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350123112&rft_id=info:pmid/31932441&rft_jstor_id=26897791&rfr_iscdi=true |