Loading…

3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments

The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomater...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-03, Vol.31 (10), p.e1806899-n/a
Main Authors: Meng, Fanben, Meyer, Carolyn M., Joung, Daeha, Vallera, Daniel A., McAlpine, Michael C., Panoskaltsis‐Mortari, Angela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5979-f011deb8cb31553d495ddd293e90e03ef0dc948e246ea215acddc3b5d8f134ae3
cites cdi_FETCH-LOGICAL-c5979-f011deb8cb31553d495ddd293e90e03ef0dc948e246ea215acddc3b5d8f134ae3
container_end_page n/a
container_issue 10
container_start_page e1806899
container_title Advanced materials (Weinheim)
container_volume 31
creator Meng, Fanben
Meyer, Carolyn M.
Joung, Daeha
Vallera, Daniel A.
McAlpine, Michael C.
Panoskaltsis‐Mortari, Angela
description The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof‐of‐concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs. A migration‐inducing, vascularized tumor model platform is created via 3D bioprinting of cells, natural hydrogels, and programmable release capsules. These cell‐laden architectures are designed to recapitulate the primary characteristics of metastasis. The 3D models both physically and chemically reconstruct the tumor microenvironments with high spatiotemporal resolution, offering a tool to bridge the gap between monolayer cell culture and animal models.
doi_str_mv 10.1002/adma.201806899
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187989953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5979-f011deb8cb31553d495ddd293e90e03ef0dc948e246ea215acddc3b5d8f134ae3</originalsourceid><addsrcrecordid>eNqFkc9vFCEUx4nR2LV69WhIPM_2AQMdLiZrq7ZJNyam9kpYeKM0O1CBWdP_Xpqtq548ceDzPu_Hl5DXDJYMgJ9YP9klBzaAGrR-QhZMctb1oOVTsgAtZKdVPxyRF6XcAoBWoJ6TIwFKCcbFgtyIc_o-pLscYkVPLyO9CTUnusZqS7U1OLpOHreF7oKlX9ClWGqeXQ0p0jTS63lKma6DywnjLuQUJ4y1vCTPRrst-OrxPSZfP364Prvorj5_ujxbXXVO6lPdjcCYx83gNoJJKXyvpfeea4EaEASO4J3uB-S9QsuZtM57JzbSDyMTvUVxTN7tvXfzZkLvWu9st6atM9l8b5IN5t-fGL6bb2lnlNaK97IJ3j4KcvoxY6nmNs05tpkNZ8OpbkeVolHLPdXWLCXjeOjAwDzkYB5yMIccWsGbv-c64L8P3wC9B36GLd7_R2dW5-vVH_kvM02XBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187989953</pqid></control><display><type>article</type><title>3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments</title><source>Wiley</source><creator>Meng, Fanben ; Meyer, Carolyn M. ; Joung, Daeha ; Vallera, Daniel A. ; McAlpine, Michael C. ; Panoskaltsis‐Mortari, Angela</creator><creatorcontrib>Meng, Fanben ; Meyer, Carolyn M. ; Joung, Daeha ; Vallera, Daniel A. ; McAlpine, Michael C. ; Panoskaltsis‐Mortari, Angela</creatorcontrib><description>The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof‐of‐concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs. A migration‐inducing, vascularized tumor model platform is created via 3D bioprinting of cells, natural hydrogels, and programmable release capsules. These cell‐laden architectures are designed to recapitulate the primary characteristics of metastasis. The 3D models both physically and chemically reconstruct the tumor microenvironments with high spatiotemporal resolution, offering a tool to bridge the gap between monolayer cell culture and animal models.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201806899</identifier><identifier>PMID: 30663123</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Anticancer properties ; Bioengineering ; Biomedical materials ; Biomimetics ; bioprinting ; Cancer ; cell migration ; Chemical compounds ; drug screening ; Drug Screening Assays, Antitumor - methods ; Endothelial cells ; Growth factors ; Humans ; Materials science ; Metastasis ; metastatic cancer model ; Neoplasms - pathology ; Pharmacology ; Printing, Three-Dimensional ; Three dimensional models ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Tumor Microenvironment ; Tumors</subject><ispartof>Advanced materials (Weinheim), 2019-03, Vol.31 (10), p.e1806899-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5979-f011deb8cb31553d495ddd293e90e03ef0dc948e246ea215acddc3b5d8f134ae3</citedby><cites>FETCH-LOGICAL-c5979-f011deb8cb31553d495ddd293e90e03ef0dc948e246ea215acddc3b5d8f134ae3</cites><orcidid>0000-0003-1802-1785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30663123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Fanben</creatorcontrib><creatorcontrib>Meyer, Carolyn M.</creatorcontrib><creatorcontrib>Joung, Daeha</creatorcontrib><creatorcontrib>Vallera, Daniel A.</creatorcontrib><creatorcontrib>McAlpine, Michael C.</creatorcontrib><creatorcontrib>Panoskaltsis‐Mortari, Angela</creatorcontrib><title>3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof‐of‐concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs. A migration‐inducing, vascularized tumor model platform is created via 3D bioprinting of cells, natural hydrogels, and programmable release capsules. These cell‐laden architectures are designed to recapitulate the primary characteristics of metastasis. The 3D models both physically and chemically reconstruct the tumor microenvironments with high spatiotemporal resolution, offering a tool to bridge the gap between monolayer cell culture and animal models.</description><subject>3D printing</subject><subject>Anticancer properties</subject><subject>Bioengineering</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>bioprinting</subject><subject>Cancer</subject><subject>cell migration</subject><subject>Chemical compounds</subject><subject>drug screening</subject><subject>Drug Screening Assays, Antitumor - methods</subject><subject>Endothelial cells</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Materials science</subject><subject>Metastasis</subject><subject>metastatic cancer model</subject><subject>Neoplasms - pathology</subject><subject>Pharmacology</subject><subject>Printing, Three-Dimensional</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9vFCEUx4nR2LV69WhIPM_2AQMdLiZrq7ZJNyam9kpYeKM0O1CBWdP_Xpqtq548ceDzPu_Hl5DXDJYMgJ9YP9klBzaAGrR-QhZMctb1oOVTsgAtZKdVPxyRF6XcAoBWoJ6TIwFKCcbFgtyIc_o-pLscYkVPLyO9CTUnusZqS7U1OLpOHreF7oKlX9ClWGqeXQ0p0jTS63lKma6DywnjLuQUJ4y1vCTPRrst-OrxPSZfP364Prvorj5_ujxbXXVO6lPdjcCYx83gNoJJKXyvpfeea4EaEASO4J3uB-S9QsuZtM57JzbSDyMTvUVxTN7tvXfzZkLvWu9st6atM9l8b5IN5t-fGL6bb2lnlNaK97IJ3j4KcvoxY6nmNs05tpkNZ8OpbkeVolHLPdXWLCXjeOjAwDzkYB5yMIccWsGbv-c64L8P3wC9B36GLd7_R2dW5-vVH_kvM02XBw</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Meng, Fanben</creator><creator>Meyer, Carolyn M.</creator><creator>Joung, Daeha</creator><creator>Vallera, Daniel A.</creator><creator>McAlpine, Michael C.</creator><creator>Panoskaltsis‐Mortari, Angela</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1802-1785</orcidid></search><sort><creationdate>201903</creationdate><title>3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments</title><author>Meng, Fanben ; Meyer, Carolyn M. ; Joung, Daeha ; Vallera, Daniel A. ; McAlpine, Michael C. ; Panoskaltsis‐Mortari, Angela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5979-f011deb8cb31553d495ddd293e90e03ef0dc948e246ea215acddc3b5d8f134ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D printing</topic><topic>Anticancer properties</topic><topic>Bioengineering</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>bioprinting</topic><topic>Cancer</topic><topic>cell migration</topic><topic>Chemical compounds</topic><topic>drug screening</topic><topic>Drug Screening Assays, Antitumor - methods</topic><topic>Endothelial cells</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Materials science</topic><topic>Metastasis</topic><topic>metastatic cancer model</topic><topic>Neoplasms - pathology</topic><topic>Pharmacology</topic><topic>Printing, Three-Dimensional</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fanben</creatorcontrib><creatorcontrib>Meyer, Carolyn M.</creatorcontrib><creatorcontrib>Joung, Daeha</creatorcontrib><creatorcontrib>Vallera, Daniel A.</creatorcontrib><creatorcontrib>McAlpine, Michael C.</creatorcontrib><creatorcontrib>Panoskaltsis‐Mortari, Angela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fanben</au><au>Meyer, Carolyn M.</au><au>Joung, Daeha</au><au>Vallera, Daniel A.</au><au>McAlpine, Michael C.</au><au>Panoskaltsis‐Mortari, Angela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-03</date><risdate>2019</risdate><volume>31</volume><issue>10</issue><spage>e1806899</spage><epage>n/a</epage><pages>e1806899-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof‐of‐concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs. A migration‐inducing, vascularized tumor model platform is created via 3D bioprinting of cells, natural hydrogels, and programmable release capsules. These cell‐laden architectures are designed to recapitulate the primary characteristics of metastasis. The 3D models both physically and chemically reconstruct the tumor microenvironments with high spatiotemporal resolution, offering a tool to bridge the gap between monolayer cell culture and animal models.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30663123</pmid><doi>10.1002/adma.201806899</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1802-1785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-03, Vol.31 (10), p.e1806899-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6996245
source Wiley
subjects 3D printing
Anticancer properties
Bioengineering
Biomedical materials
Biomimetics
bioprinting
Cancer
cell migration
Chemical compounds
drug screening
Drug Screening Assays, Antitumor - methods
Endothelial cells
Growth factors
Humans
Materials science
Metastasis
metastatic cancer model
Neoplasms - pathology
Pharmacology
Printing, Three-Dimensional
Three dimensional models
Three dimensional printing
Tissue Engineering
Tissue Scaffolds - chemistry
Tumor Microenvironment
Tumors
title 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Bioprinted%20In%20Vitro%20Metastatic%20Models%20via%20Reconstruction%20of%20Tumor%20Microenvironments&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Meng,%20Fanben&rft.date=2019-03&rft.volume=31&rft.issue=10&rft.spage=e1806899&rft.epage=n/a&rft.pages=e1806899-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201806899&rft_dat=%3Cproquest_pubme%3E2187989953%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5979-f011deb8cb31553d495ddd293e90e03ef0dc948e246ea215acddc3b5d8f134ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187989953&rft_id=info:pmid/30663123&rfr_iscdi=true