Loading…

Production of bioalcohols and antioxidant compounds by acid hydrolysis of lignocellulosic wastes and fermentation of hydrolysates with Hansenula polymorpha

The effect of the H2SO4 concentration in the hydrolysis of sunflower‐stalk waste, at 95ºC and using a liquid/solid relation of 20, was studied. In a later stage, the hydrolysates were fermented at different temperatures with the aim of ethanol and xylitol production. A total conversion of the hemice...

Full description

Saved in:
Bibliographic Details
Published in:Engineering in life sciences 2019-07, Vol.19 (7), p.522-536
Main Authors: Martínez‐Cartas, Mª Lourdes, Olivares, Mª Inmaculada, Sánchez, Sebastián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of the H2SO4 concentration in the hydrolysis of sunflower‐stalk waste, at 95ºC and using a liquid/solid relation of 20, was studied. In a later stage, the hydrolysates were fermented at different temperatures with the aim of ethanol and xylitol production. A total conversion of the hemicellulose at the acid concentration of 0.5 mol/L was achieved; whereas an acid concentration of 2.5 mol/L was needed to reach the maximum value in the conversion of the cellulose fraction. The analysis of the hydrolysis kinetics has enabled to determine the apparent reaction order, which was 1.3. The hydrolysates from hydrolysis process with H2SO4 0.5 mol/L, once detoxified, were fermented at pH 5.5, temperatures 30, 40, and 50ºC with the yeast Hansenula polymorpha (ATCC 34438), resulting in a sequential uptake of sugars. In relation to ethanol and xylitol yields, the best results were observed at 50°C (YE/sO = 0.11 g/g; YXy/sO = 0.12 g/g). Instantaneous xylitol yields were higher than in ethanol, at the three temperatures essayed. Different phenolic compounds were analyzed in the hydrolysates; hydroxytyrosol was the most abundant (3.79 mg/L). The recovery of these compounds entails the elimination of inhibitors in the fermentation process and the production of high value‐added antioxidant products.
ISSN:1618-0240
1618-2863
DOI:10.1002/elsc.201900011