Loading…

Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks

Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2020-01, Vol.21 (1), p.32-35
Main Authors: Osborn Popp, Thomas M., Plantz, Ariel Z., Yaghi, Omar M., Reimer, Jeffrey A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333
cites cdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333
container_end_page 35
container_issue 1
container_start_page 32
container_title Chemphyschem
container_volume 21
creator Osborn Popp, Thomas M.
Plantz, Ariel Z.
Yaghi, Omar M.
Reimer, Jeffrey A.
description Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker. Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding.
doi_str_mv 10.1002/cphc.201901043
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334124049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EoiVw5YgsOCf43-7GFyS0pbRSo1YCzpbjHTcujh1sb6veeASekSfB1YYAJ04z0vzmm2_0IfSSkgUlhL01u41ZMEIloUTwR-iYCi7nXSvo430vGG-O0LOcbwghS9LRp-iI01Zy1rJj5K4SGJcB9zGUFD2OFq-iBzN6nfAn8Pbn9x8nztoxuxiwC_g8xwTFTYAOA16NvrhbnZwugFdQtK8rl-laB2fwadJbuIvpa36OnljtM7zY1xn6cvrhc382v7j8eN6_v5ibhjM-79Z2vdQtEbRhet20nDMprBgaYK0xA2ttw7WEZrBWi04KabmlmteBNkJyzmfo3aS7G9dbGAzUv7RXu-S2Ot2rqJ36dxLcRl3HW9WRenTZVIHXk0DMxalsXAGzMTEEMEXRRlK5pBV6s7-S4rcRclE3cUyhPqYY54IyQaqbGVpMlEkx5wT2YIMS9ZCfeshPHfKrC6_-Nn_AfwdWATkBd87D_X_kVH911v8R_wVD46rO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334124049</pqid></control><display><type>article</type><title>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</title><source>Wiley</source><creator>Osborn Popp, Thomas M. ; Plantz, Ariel Z. ; Yaghi, Omar M. ; Reimer, Jeffrey A.</creator><creatorcontrib>Osborn Popp, Thomas M. ; Plantz, Ariel Z. ; Yaghi, Omar M. ; Reimer, Jeffrey A. ; Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker. Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201901043</identifier><identifier>PMID: 31693262</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Apertures ; Diffusion ; Diffusion coefficient ; Dimethylformamide - chemistry ; Drug delivery systems ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; liquids ; Metal-organic frameworks ; Metal-Organic Frameworks - chemistry ; Models, Molecular ; Molecular diffusion ; Molecular Structure ; Multivariate analysis ; nuclear magnetic resonance ; Organic chemistry ; Particle Size ; Polarity ; pulsed-field gradient ; Single crystals ; Solvents ; Surface Properties</subject><ispartof>Chemphyschem, 2020-01, Vol.21 (1), p.32-35</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</citedby><cites>FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31693262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1591981$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osborn Popp, Thomas M.</creatorcontrib><creatorcontrib>Plantz, Ariel Z.</creatorcontrib><creatorcontrib>Yaghi, Omar M.</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker. Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding.</description><subject>Apertures</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Dimethylformamide - chemistry</subject><subject>Drug delivery systems</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>liquids</subject><subject>Metal-organic frameworks</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular diffusion</subject><subject>Molecular Structure</subject><subject>Multivariate analysis</subject><subject>nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Particle Size</subject><subject>Polarity</subject><subject>pulsed-field gradient</subject><subject>Single crystals</subject><subject>Solvents</subject><subject>Surface Properties</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQxi0EoiVw5YgsOCf43-7GFyS0pbRSo1YCzpbjHTcujh1sb6veeASekSfB1YYAJ04z0vzmm2_0IfSSkgUlhL01u41ZMEIloUTwR-iYCi7nXSvo430vGG-O0LOcbwghS9LRp-iI01Zy1rJj5K4SGJcB9zGUFD2OFq-iBzN6nfAn8Pbn9x8nztoxuxiwC_g8xwTFTYAOA16NvrhbnZwugFdQtK8rl-laB2fwadJbuIvpa36OnljtM7zY1xn6cvrhc382v7j8eN6_v5ibhjM-79Z2vdQtEbRhet20nDMprBgaYK0xA2ttw7WEZrBWi04KabmlmteBNkJyzmfo3aS7G9dbGAzUv7RXu-S2Ot2rqJ36dxLcRl3HW9WRenTZVIHXk0DMxalsXAGzMTEEMEXRRlK5pBV6s7-S4rcRclE3cUyhPqYY54IyQaqbGVpMlEkx5wT2YIMS9ZCfeshPHfKrC6_-Nn_AfwdWATkBd87D_X_kVH911v8R_wVD46rO</recordid><startdate>20200103</startdate><enddate>20200103</enddate><creator>Osborn Popp, Thomas M.</creator><creator>Plantz, Ariel Z.</creator><creator>Yaghi, Omar M.</creator><creator>Reimer, Jeffrey A.</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20200103</creationdate><title>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</title><author>Osborn Popp, Thomas M. ; Plantz, Ariel Z. ; Yaghi, Omar M. ; Reimer, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apertures</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Dimethylformamide - chemistry</topic><topic>Drug delivery systems</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>liquids</topic><topic>Metal-organic frameworks</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular diffusion</topic><topic>Molecular Structure</topic><topic>Multivariate analysis</topic><topic>nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Particle Size</topic><topic>Polarity</topic><topic>pulsed-field gradient</topic><topic>Single crystals</topic><topic>Solvents</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osborn Popp, Thomas M.</creatorcontrib><creatorcontrib>Plantz, Ariel Z.</creatorcontrib><creatorcontrib>Yaghi, Omar M.</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osborn Popp, Thomas M.</au><au>Plantz, Ariel Z.</au><au>Yaghi, Omar M.</au><au>Reimer, Jeffrey A.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2020-01-03</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>32</spage><epage>35</epage><pages>32-35</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker. Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31693262</pmid><doi>10.1002/cphc.201901043</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2020-01, Vol.21 (1), p.32-35
issn 1439-4235
1439-7641
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004185
source Wiley
subjects Apertures
Diffusion
Diffusion coefficient
Dimethylformamide - chemistry
Drug delivery systems
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
liquids
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
Models, Molecular
Molecular diffusion
Molecular Structure
Multivariate analysis
nuclear magnetic resonance
Organic chemistry
Particle Size
Polarity
pulsed-field gradient
Single crystals
Solvents
Surface Properties
title Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Control%20of%20Molecular%20Self%E2%80%90Diffusion%20in%20Isoreticular%20and%20Multivariate%20Metal%E2%80%90Organic%20Frameworks&rft.jtitle=Chemphyschem&rft.au=Osborn%20Popp,%20Thomas%20M.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Gas%20Separations%20Relevant%20to%20Clean%20Energy%20Technologies%20(CGS)&rft.date=2020-01-03&rft.volume=21&rft.issue=1&rft.spage=32&rft.epage=35&rft.pages=32-35&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201901043&rft_dat=%3Cproquest_pubme%3E2334124049%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334124049&rft_id=info:pmid/31693262&rfr_iscdi=true