Loading…
Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks
Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF...
Saved in:
Published in: | Chemphyschem 2020-01, Vol.21 (1), p.32-35 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333 |
---|---|
cites | cdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333 |
container_end_page | 35 |
container_issue | 1 |
container_start_page | 32 |
container_title | Chemphyschem |
container_volume | 21 |
creator | Osborn Popp, Thomas M. Plantz, Ariel Z. Yaghi, Omar M. Reimer, Jeffrey A. |
description | Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker.
Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding. |
doi_str_mv | 10.1002/cphc.201901043 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334124049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EoiVw5YgsOCf43-7GFyS0pbRSo1YCzpbjHTcujh1sb6veeASekSfB1YYAJ04z0vzmm2_0IfSSkgUlhL01u41ZMEIloUTwR-iYCi7nXSvo430vGG-O0LOcbwghS9LRp-iI01Zy1rJj5K4SGJcB9zGUFD2OFq-iBzN6nfAn8Pbn9x8nztoxuxiwC_g8xwTFTYAOA16NvrhbnZwugFdQtK8rl-laB2fwadJbuIvpa36OnljtM7zY1xn6cvrhc382v7j8eN6_v5ibhjM-79Z2vdQtEbRhet20nDMprBgaYK0xA2ttw7WEZrBWi04KabmlmteBNkJyzmfo3aS7G9dbGAzUv7RXu-S2Ot2rqJ36dxLcRl3HW9WRenTZVIHXk0DMxalsXAGzMTEEMEXRRlK5pBV6s7-S4rcRclE3cUyhPqYY54IyQaqbGVpMlEkx5wT2YIMS9ZCfeshPHfKrC6_-Nn_AfwdWATkBd87D_X_kVH911v8R_wVD46rO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334124049</pqid></control><display><type>article</type><title>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</title><source>Wiley</source><creator>Osborn Popp, Thomas M. ; Plantz, Ariel Z. ; Yaghi, Omar M. ; Reimer, Jeffrey A.</creator><creatorcontrib>Osborn Popp, Thomas M. ; Plantz, Ariel Z. ; Yaghi, Omar M. ; Reimer, Jeffrey A. ; Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker.
Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201901043</identifier><identifier>PMID: 31693262</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Apertures ; Diffusion ; Diffusion coefficient ; Dimethylformamide - chemistry ; Drug delivery systems ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; liquids ; Metal-organic frameworks ; Metal-Organic Frameworks - chemistry ; Models, Molecular ; Molecular diffusion ; Molecular Structure ; Multivariate analysis ; nuclear magnetic resonance ; Organic chemistry ; Particle Size ; Polarity ; pulsed-field gradient ; Single crystals ; Solvents ; Surface Properties</subject><ispartof>Chemphyschem, 2020-01, Vol.21 (1), p.32-35</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</citedby><cites>FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31693262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1591981$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osborn Popp, Thomas M.</creatorcontrib><creatorcontrib>Plantz, Ariel Z.</creatorcontrib><creatorcontrib>Yaghi, Omar M.</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker.
Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding.</description><subject>Apertures</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Dimethylformamide - chemistry</subject><subject>Drug delivery systems</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>liquids</subject><subject>Metal-organic frameworks</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular diffusion</subject><subject>Molecular Structure</subject><subject>Multivariate analysis</subject><subject>nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Particle Size</subject><subject>Polarity</subject><subject>pulsed-field gradient</subject><subject>Single crystals</subject><subject>Solvents</subject><subject>Surface Properties</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQxi0EoiVw5YgsOCf43-7GFyS0pbRSo1YCzpbjHTcujh1sb6veeASekSfB1YYAJ04z0vzmm2_0IfSSkgUlhL01u41ZMEIloUTwR-iYCi7nXSvo430vGG-O0LOcbwghS9LRp-iI01Zy1rJj5K4SGJcB9zGUFD2OFq-iBzN6nfAn8Pbn9x8nztoxuxiwC_g8xwTFTYAOA16NvrhbnZwugFdQtK8rl-laB2fwadJbuIvpa36OnljtM7zY1xn6cvrhc382v7j8eN6_v5ibhjM-79Z2vdQtEbRhet20nDMprBgaYK0xA2ttw7WEZrBWi04KabmlmteBNkJyzmfo3aS7G9dbGAzUv7RXu-S2Ot2rqJ36dxLcRl3HW9WRenTZVIHXk0DMxalsXAGzMTEEMEXRRlK5pBV6s7-S4rcRclE3cUyhPqYY54IyQaqbGVpMlEkx5wT2YIMS9ZCfeshPHfKrC6_-Nn_AfwdWATkBd87D_X_kVH911v8R_wVD46rO</recordid><startdate>20200103</startdate><enddate>20200103</enddate><creator>Osborn Popp, Thomas M.</creator><creator>Plantz, Ariel Z.</creator><creator>Yaghi, Omar M.</creator><creator>Reimer, Jeffrey A.</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20200103</creationdate><title>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</title><author>Osborn Popp, Thomas M. ; Plantz, Ariel Z. ; Yaghi, Omar M. ; Reimer, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apertures</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Dimethylformamide - chemistry</topic><topic>Drug delivery systems</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>liquids</topic><topic>Metal-organic frameworks</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular diffusion</topic><topic>Molecular Structure</topic><topic>Multivariate analysis</topic><topic>nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Particle Size</topic><topic>Polarity</topic><topic>pulsed-field gradient</topic><topic>Single crystals</topic><topic>Solvents</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osborn Popp, Thomas M.</creatorcontrib><creatorcontrib>Plantz, Ariel Z.</creatorcontrib><creatorcontrib>Yaghi, Omar M.</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osborn Popp, Thomas M.</au><au>Plantz, Ariel Z.</au><au>Yaghi, Omar M.</au><au>Reimer, Jeffrey A.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2020-01-03</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>32</spage><epage>35</epage><pages>32-35</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Understanding the factors that affect self‐diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self‐diffusion of solvents saturated within the pores of large single crystals of MOF‐5, IRMOF‐3 (amino‐functionalized MOF‐5), and 17 MTV‐MOF‐5/IRMOF‐3 materials at various mole fractions. We find that the apparent self‐diffusion coefficient of N,N‐dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF‐5 and IRMOF‐3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF‐5 and IRMOF‐3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self‐diffusion coefficients for solvents in MOF‐5 to those in IRMOF‐3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent‐linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker.
Diffusion of guests within the metal‐organic framework MOF‐5 is shown to linearly decrease as the isoreticular NH2‐functionalized linker is incorporated into the framework. This NH2 functionality is shown to slow the translational motion of guests by reducing the pore metrics of the framework, and not through hydrogen bonding.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31693262</pmid><doi>10.1002/cphc.201901043</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2020-01, Vol.21 (1), p.32-35 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004185 |
source | Wiley |
subjects | Apertures Diffusion Diffusion coefficient Dimethylformamide - chemistry Drug delivery systems INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY liquids Metal-organic frameworks Metal-Organic Frameworks - chemistry Models, Molecular Molecular diffusion Molecular Structure Multivariate analysis nuclear magnetic resonance Organic chemistry Particle Size Polarity pulsed-field gradient Single crystals Solvents Surface Properties |
title | Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Control%20of%20Molecular%20Self%E2%80%90Diffusion%20in%20Isoreticular%20and%20Multivariate%20Metal%E2%80%90Organic%20Frameworks&rft.jtitle=Chemphyschem&rft.au=Osborn%20Popp,%20Thomas%20M.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Gas%20Separations%20Relevant%20to%20Clean%20Energy%20Technologies%20(CGS)&rft.date=2020-01-03&rft.volume=21&rft.issue=1&rft.spage=32&rft.epage=35&rft.pages=32-35&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201901043&rft_dat=%3Cproquest_pubme%3E2334124049%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5323-7bfb8a604152ab5633294f4d5e26ccd26f53a9e5dffa47949f3f1a3d26ac49333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334124049&rft_id=info:pmid/31693262&rfr_iscdi=true |