Loading…
Holographic molecular binding assays
We demonstrate that holographic particle characterization can directly detect binding of proteins to functionalized colloidal probe particles by monitoring the associated change in the particles’ size. This label-free molecular binding assay uses in-line holographic video microscopy to measure the d...
Saved in:
Published in: | Scientific reports 2020-02, Vol.10 (1), p.1932-1932, Article 1932 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that holographic particle characterization can directly detect binding of proteins to functionalized colloidal probe particles by monitoring the associated change in the particles’ size. This label-free molecular binding assay uses in-line holographic video microscopy to measure the diameter and refractive index of individual probe spheres as they flow down a microfluidic channel. Pooling measurements on 10
4
particles yields the population-average diameter with an uncertainty smaller than 0.5 nm, which is sufficient to detect sub-monolayer coverage by bound proteins. We demonstrate this method by monitoring binding of NeutrAvidin to biotinylated spheres and binding of immunoglobulin G to spheres functionalized with protein A. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-58833-7 |