Loading…

High mobility in a van der Waals layered antiferromagnetic metal

Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW m...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2020-02, Vol.6 (6), p.eaay6407-eaay6407
Main Authors: Lei, Shiming, Lin, Jingjing, Jia, Yanyu, Gray, Mason, Topp, Andreas, Farahi, Gelareh, Klemenz, Sebastian, Gao, Tong, Rodolakis, Fanny, McChesney, Jessica L, Ast, Christian R, Yazdani, Ali, Burch, Kenneth S, Wu, Sanfeng, Ong, Nai Phuan, Schoop, Leslie M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-3a4d71c6af51127ec025815dedbe50b4895485577013f01ace1617b5884def9b3
cites cdi_FETCH-LOGICAL-c483t-3a4d71c6af51127ec025815dedbe50b4895485577013f01ace1617b5884def9b3
container_end_page eaay6407
container_issue 6
container_start_page eaay6407
container_title Science advances
container_volume 6
creator Lei, Shiming
Lin, Jingjing
Jia, Yanyu
Gray, Mason
Topp, Andreas
Farahi, Gelareh
Klemenz, Sebastian
Gao, Tong
Rodolakis, Fanny
McChesney, Jessica L
Ast, Christian R
Yazdani, Ali
Burch, Kenneth S
Wu, Sanfeng
Ong, Nai Phuan
Schoop, Leslie M
description Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe . The electron mobility is beyond 60,000 cm V s , which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe can be exfoliated to ultrathin flakes of three monolayers.
doi_str_mv 10.1126/sciadv.aay6407
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2362076563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-3a4d71c6af51127ec025815dedbe50b4895485577013f01ace1617b5884def9b3</originalsourceid><addsrcrecordid>eNpVkc1rGzEQxUVpaYyba49F5NSLHWn1tXspKaaJA4FcEnoUs9pZW2VXSiXZ4P--G-yY9KQB_ebNm3mEfOVsyXmlr7Pz0O2XAActmflAZpUwalEpWX98V1-Qy5z_MMa41Frx5jO5EBWrBa_ljNys_WZLx9j6wZcD9YEC3UOgHSb6G2DIdIADJuwohOJ7TCmOsAlYvKMjFhi-kE_9hOHl6Z2T59tfT6v14uHx7n7182HhZC3KQoDsDHcaejVZN-hYpWquOuxaVKyVdTM5VcoYxkXPODjkmptW1bXssG9aMSc_jrovu3bEzmEoCQb7kvwI6WAjePv_T_Bbu4l7axgzlVaTwNVRIObi7XS6gm7rYgjoiuWqaZh8hb6fpqT4d4e52NFnh8MAAeMu20roihmttJjQ5RF1KeacsD974cy-xmOP8dhTPFPDt_cbnPG3MMQ_3dOM_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362076563</pqid></control><display><type>article</type><title>High mobility in a van der Waals layered antiferromagnetic metal</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Lei, Shiming ; Lin, Jingjing ; Jia, Yanyu ; Gray, Mason ; Topp, Andreas ; Farahi, Gelareh ; Klemenz, Sebastian ; Gao, Tong ; Rodolakis, Fanny ; McChesney, Jessica L ; Ast, Christian R ; Yazdani, Ali ; Burch, Kenneth S ; Wu, Sanfeng ; Ong, Nai Phuan ; Schoop, Leslie M</creator><creatorcontrib>Lei, Shiming ; Lin, Jingjing ; Jia, Yanyu ; Gray, Mason ; Topp, Andreas ; Farahi, Gelareh ; Klemenz, Sebastian ; Gao, Tong ; Rodolakis, Fanny ; McChesney, Jessica L ; Ast, Christian R ; Yazdani, Ali ; Burch, Kenneth S ; Wu, Sanfeng ; Ong, Nai Phuan ; Schoop, Leslie M ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe . The electron mobility is beyond 60,000 cm V s , which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe can be exfoliated to ultrathin flakes of three monolayers.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aay6407</identifier><identifier>PMID: 32083184</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Materials Science ; SciAdv r-articles</subject><ispartof>Science advances, 2020-02, Vol.6 (6), p.eaay6407-eaay6407</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-3a4d71c6af51127ec025815dedbe50b4895485577013f01ace1617b5884def9b3</citedby><cites>FETCH-LOGICAL-c483t-3a4d71c6af51127ec025815dedbe50b4895485577013f01ace1617b5884def9b3</cites><orcidid>0000-0001-7166-1058 ; 0000-0001-6061-8441 ; 0000-0003-3359-4880 ; 0000-0003-3459-4241 ; 0000-0002-8157-3892 ; 0000-0002-7541-0245 ; 0000-0003-4996-8904 ; 0000-0001-8041-7161 ; 0000-0001-5156-2693 ; 0000-0002-2778-9166 ; 0000000275410245 ; 0000000334594241 ; 0000000349968904 ; 0000000227789166 ; 0000000171661058 ; 0000000160618441 ; 0000000180417161 ; 0000000333594880 ; 0000000151562693 ; 0000000281573892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007265/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007265/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2871,2872,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32083184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1599045$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Shiming</creatorcontrib><creatorcontrib>Lin, Jingjing</creatorcontrib><creatorcontrib>Jia, Yanyu</creatorcontrib><creatorcontrib>Gray, Mason</creatorcontrib><creatorcontrib>Topp, Andreas</creatorcontrib><creatorcontrib>Farahi, Gelareh</creatorcontrib><creatorcontrib>Klemenz, Sebastian</creatorcontrib><creatorcontrib>Gao, Tong</creatorcontrib><creatorcontrib>Rodolakis, Fanny</creatorcontrib><creatorcontrib>McChesney, Jessica L</creatorcontrib><creatorcontrib>Ast, Christian R</creatorcontrib><creatorcontrib>Yazdani, Ali</creatorcontrib><creatorcontrib>Burch, Kenneth S</creatorcontrib><creatorcontrib>Wu, Sanfeng</creatorcontrib><creatorcontrib>Ong, Nai Phuan</creatorcontrib><creatorcontrib>Schoop, Leslie M</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>High mobility in a van der Waals layered antiferromagnetic metal</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe . The electron mobility is beyond 60,000 cm V s , which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe can be exfoliated to ultrathin flakes of three monolayers.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Materials Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc1rGzEQxUVpaYyba49F5NSLHWn1tXspKaaJA4FcEnoUs9pZW2VXSiXZ4P--G-yY9KQB_ebNm3mEfOVsyXmlr7Pz0O2XAActmflAZpUwalEpWX98V1-Qy5z_MMa41Frx5jO5EBWrBa_ljNys_WZLx9j6wZcD9YEC3UOgHSb6G2DIdIADJuwohOJ7TCmOsAlYvKMjFhi-kE_9hOHl6Z2T59tfT6v14uHx7n7182HhZC3KQoDsDHcaejVZN-hYpWquOuxaVKyVdTM5VcoYxkXPODjkmptW1bXssG9aMSc_jrovu3bEzmEoCQb7kvwI6WAjePv_T_Bbu4l7axgzlVaTwNVRIObi7XS6gm7rYgjoiuWqaZh8hb6fpqT4d4e52NFnh8MAAeMu20roihmttJjQ5RF1KeacsD974cy-xmOP8dhTPFPDt_cbnPG3MMQ_3dOM_A</recordid><startdate>20200207</startdate><enddate>20200207</enddate><creator>Lei, Shiming</creator><creator>Lin, Jingjing</creator><creator>Jia, Yanyu</creator><creator>Gray, Mason</creator><creator>Topp, Andreas</creator><creator>Farahi, Gelareh</creator><creator>Klemenz, Sebastian</creator><creator>Gao, Tong</creator><creator>Rodolakis, Fanny</creator><creator>McChesney, Jessica L</creator><creator>Ast, Christian R</creator><creator>Yazdani, Ali</creator><creator>Burch, Kenneth S</creator><creator>Wu, Sanfeng</creator><creator>Ong, Nai Phuan</creator><creator>Schoop, Leslie M</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7166-1058</orcidid><orcidid>https://orcid.org/0000-0001-6061-8441</orcidid><orcidid>https://orcid.org/0000-0003-3359-4880</orcidid><orcidid>https://orcid.org/0000-0003-3459-4241</orcidid><orcidid>https://orcid.org/0000-0002-8157-3892</orcidid><orcidid>https://orcid.org/0000-0002-7541-0245</orcidid><orcidid>https://orcid.org/0000-0003-4996-8904</orcidid><orcidid>https://orcid.org/0000-0001-8041-7161</orcidid><orcidid>https://orcid.org/0000-0001-5156-2693</orcidid><orcidid>https://orcid.org/0000-0002-2778-9166</orcidid><orcidid>https://orcid.org/0000000275410245</orcidid><orcidid>https://orcid.org/0000000334594241</orcidid><orcidid>https://orcid.org/0000000349968904</orcidid><orcidid>https://orcid.org/0000000227789166</orcidid><orcidid>https://orcid.org/0000000171661058</orcidid><orcidid>https://orcid.org/0000000160618441</orcidid><orcidid>https://orcid.org/0000000180417161</orcidid><orcidid>https://orcid.org/0000000333594880</orcidid><orcidid>https://orcid.org/0000000151562693</orcidid><orcidid>https://orcid.org/0000000281573892</orcidid></search><sort><creationdate>20200207</creationdate><title>High mobility in a van der Waals layered antiferromagnetic metal</title><author>Lei, Shiming ; Lin, Jingjing ; Jia, Yanyu ; Gray, Mason ; Topp, Andreas ; Farahi, Gelareh ; Klemenz, Sebastian ; Gao, Tong ; Rodolakis, Fanny ; McChesney, Jessica L ; Ast, Christian R ; Yazdani, Ali ; Burch, Kenneth S ; Wu, Sanfeng ; Ong, Nai Phuan ; Schoop, Leslie M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-3a4d71c6af51127ec025815dedbe50b4895485577013f01ace1617b5884def9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Materials Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Shiming</creatorcontrib><creatorcontrib>Lin, Jingjing</creatorcontrib><creatorcontrib>Jia, Yanyu</creatorcontrib><creatorcontrib>Gray, Mason</creatorcontrib><creatorcontrib>Topp, Andreas</creatorcontrib><creatorcontrib>Farahi, Gelareh</creatorcontrib><creatorcontrib>Klemenz, Sebastian</creatorcontrib><creatorcontrib>Gao, Tong</creatorcontrib><creatorcontrib>Rodolakis, Fanny</creatorcontrib><creatorcontrib>McChesney, Jessica L</creatorcontrib><creatorcontrib>Ast, Christian R</creatorcontrib><creatorcontrib>Yazdani, Ali</creatorcontrib><creatorcontrib>Burch, Kenneth S</creatorcontrib><creatorcontrib>Wu, Sanfeng</creatorcontrib><creatorcontrib>Ong, Nai Phuan</creatorcontrib><creatorcontrib>Schoop, Leslie M</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Shiming</au><au>Lin, Jingjing</au><au>Jia, Yanyu</au><au>Gray, Mason</au><au>Topp, Andreas</au><au>Farahi, Gelareh</au><au>Klemenz, Sebastian</au><au>Gao, Tong</au><au>Rodolakis, Fanny</au><au>McChesney, Jessica L</au><au>Ast, Christian R</au><au>Yazdani, Ali</au><au>Burch, Kenneth S</au><au>Wu, Sanfeng</au><au>Ong, Nai Phuan</au><au>Schoop, Leslie M</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High mobility in a van der Waals layered antiferromagnetic metal</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2020-02-07</date><risdate>2020</risdate><volume>6</volume><issue>6</issue><spage>eaay6407</spage><epage>eaay6407</epage><pages>eaay6407-eaay6407</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe . The electron mobility is beyond 60,000 cm V s , which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe can be exfoliated to ultrathin flakes of three monolayers.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>32083184</pmid><doi>10.1126/sciadv.aay6407</doi><orcidid>https://orcid.org/0000-0001-7166-1058</orcidid><orcidid>https://orcid.org/0000-0001-6061-8441</orcidid><orcidid>https://orcid.org/0000-0003-3359-4880</orcidid><orcidid>https://orcid.org/0000-0003-3459-4241</orcidid><orcidid>https://orcid.org/0000-0002-8157-3892</orcidid><orcidid>https://orcid.org/0000-0002-7541-0245</orcidid><orcidid>https://orcid.org/0000-0003-4996-8904</orcidid><orcidid>https://orcid.org/0000-0001-8041-7161</orcidid><orcidid>https://orcid.org/0000-0001-5156-2693</orcidid><orcidid>https://orcid.org/0000-0002-2778-9166</orcidid><orcidid>https://orcid.org/0000000275410245</orcidid><orcidid>https://orcid.org/0000000334594241</orcidid><orcidid>https://orcid.org/0000000349968904</orcidid><orcidid>https://orcid.org/0000000227789166</orcidid><orcidid>https://orcid.org/0000000171661058</orcidid><orcidid>https://orcid.org/0000000160618441</orcidid><orcidid>https://orcid.org/0000000180417161</orcidid><orcidid>https://orcid.org/0000000333594880</orcidid><orcidid>https://orcid.org/0000000151562693</orcidid><orcidid>https://orcid.org/0000000281573892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2020-02, Vol.6 (6), p.eaay6407-eaay6407
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007265
source American Association for the Advancement of Science; PubMed Central
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Materials Science
SciAdv r-articles
title High mobility in a van der Waals layered antiferromagnetic metal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20mobility%20in%20a%20van%20der%20Waals%20layered%20antiferromagnetic%20metal&rft.jtitle=Science%20advances&rft.au=Lei,%20Shiming&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-02-07&rft.volume=6&rft.issue=6&rft.spage=eaay6407&rft.epage=eaay6407&rft.pages=eaay6407-eaay6407&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aay6407&rft_dat=%3Cproquest_pubme%3E2362076563%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-3a4d71c6af51127ec025815dedbe50b4895485577013f01ace1617b5884def9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2362076563&rft_id=info:pmid/32083184&rfr_iscdi=true