Loading…

Oncogenic K-ras Induces Mitochondrial OPA3 Expression to Promote Energy Metabolism in Pancreatic Cancer Cells

K-ras (Kirsten ras GTPase) mutations are oncogenic events frequently observed in many cancer types especially in pancreatic cancer. Although mitochondrial dysfunction has been associated with K-ras mutation, the molecular mechanisms by which K-ras impacts mitochondria and maintains metabolic homeost...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2019-12, Vol.12 (1), p.65
Main Authors: Meng, Ning, Glorieux, Christophe, Zhang, Yanyu, Liang, Liyun, Zeng, Peiting, Lu, Wenhua, Huang, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:K-ras (Kirsten ras GTPase) mutations are oncogenic events frequently observed in many cancer types especially in pancreatic cancer. Although mitochondrial dysfunction has been associated with K-ras mutation, the molecular mechanisms by which K-ras impacts mitochondria and maintains metabolic homeostasis are not fully understood. In this study, we used two K-ras inducible cell systems, human pancreatic epithelial/ K-ras (HPNE/K-ras ) and human embryonic kidney cells with tetracycline repressorT-Rex/K-ras , to evaluate the role of oncogenic K-ras in regulating mitochondrial function. Among a panel of genes known to affect mitochondria, only the expression of OPA3 (optic atrophy protein 3) was consistently up-regulated by K-ras activation in both cell lines. Importantly, high expression of OPA3 was also observed in clinical pancreatic cancer tissues. Genetic knockdown of OPA3 caused a significant decrease of energy metabolism, manifested by a suppression of oxygen consumption rate (OCR) and a decrease in cellular ATP content, leading to inhibition of cell proliferation capacity and reduced expression of epithelial-mesenchymal transition (EMT) markers. Our study suggests that OPA3 may promote cellular energy metabolism and its up-regulation in K-ras-driven cancer is likely a mechanism to offset the negative impact of K-ras on mitochondria to maintain energy homeostasis. As such, OPA3 could be a potential target to kill cancer cells with K-ras mutations.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers12010065