Loading…

Population Genetic Structure of the German Cockroach (Blattodea: Blattellidae) in Apartment Buildings

The German cockroach, Blattella germanica (L.) (Blattodea: Blattellidae), is a major residential pest with the potential to vector various pathogens and produce and disseminate household allergens. Understanding population genetic structure and differentiation of this important pest is critical to e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical entomology 2010-07, Vol.47 (4), p.553-564
Main Authors: Crissman, Jonathan R., Booth, Warren, Santangelo, Richard G., Mukha, Dmitry V., Vargo, Edward L., Schal, Coby
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The German cockroach, Blattella germanica (L.) (Blattodea: Blattellidae), is a major residential pest with the potential to vector various pathogens and produce and disseminate household allergens. Understanding population genetic structure and differentiation of this important pest is critical to efforts to eradicate infestations, yet little is known in this regard. Using highly polymorphic microsatellite markers, we investigated patterns of genetic diversity and differentiation within and among 18 apartments from six apartment complexes located in Raleigh, NC. No departure from panmixia was found between rooms within apartments, indicating that active dispersal resulting in gene flow may occur among rooms within apartment units. Alternatively, aggregations within apartments may exist in relative isolation under a metapopulation framework, derived from a recent, common source. Thus, in the event of population control practices leading to incomplete cockroach eradication within an apartment, recolonization of shelters and rooms is likely to occur from a genetically similar aggregation. A pattern of isolation-by-distance across the six apartment complexes indicated that dispersal was more common within complexes than among them, and F statistics suggested greater genetic similarity between apartments in a single building than between separate buildings of an apartment complex. Similarly, neighbor-joining tree and Bayesian clustering analyses were able to cluster only those apartments that were within a single building, indicating higher dispersal with associated gene flow within buildings than between them. The lack of any broader connectivity, as indicated by significant FST and G-tests suggests that human-mediated dispersal of B. germanica between buildings of an apartment complex or between complexes occurs infrequently enough to have negligible effects on gene flow.
ISSN:0022-2585
1938-2928
DOI:10.1093/jmedent/47.4.553