Loading…
Predicting future climate at high spatial and temporal resolution
Most studies on the biological effects of future climatic changes rely on seasonally aggregated, coarse‐resolution data. Such data mask spatial and temporal variability in microclimate driven by terrain, wind and vegetation, and ultimately bear little resemblance to the conditions that organisms exp...
Saved in:
Published in: | Global change biology 2020-02, Vol.26 (2), p.1003-1011 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most studies on the biological effects of future climatic changes rely on seasonally aggregated, coarse‐resolution data. Such data mask spatial and temporal variability in microclimate driven by terrain, wind and vegetation, and ultimately bear little resemblance to the conditions that organisms experience in the wild. Here, I present the methods for providing fine‐grained, hourly and daily estimates of current and future temperature and soil moisture over decadal timescales. Observed climate data and spatially coherent probabilistic projections of daily future weather were disaggregated to hourly and used to drive empirically calibrated physical models of thermal and hydrological microclimates. Mesoclimatic effects (cold‐air drainage, coastal exposure and elevation) were determined from the coarse‐resolution climate surfaces using thin‐plate spline models with coastal exposure and elevation as predictors. Differences between micro and mesoclimate temperatures were determined from terrain, vegetation and ground properties using energy balance equations. Soil moisture was computed in a thin upper layer and an underlying deeper layer, and the exchange of water between these layers was calculated using the van Genuchten equation. Code for processing the data and running the models is provided as a series of R packages. The methods were applied to the Lizard Peninsula, United Kingdom, to provide hourly estimates of temperature (100 m grid resolution over entire area, 1 m for a selected area) for the periods 1983–2017 and 2041–2049. Results indicated that there is a fine‐resolution variability in climatic changes, driven primarily by interactions between landscape features and decadal trends in weather conditions. High‐temporal resolution extremes in conditions under future climate change were predicted to be considerably less novel than the extremes estimated using seasonally aggregated variables. The study highlights the need to more accurately estimate the future climatic conditions experienced by organisms and equips biologists with the means to do so.
Methods for generating fine‐grained, multidecadal estimates of current future temperature and soil moisture are presented. Observed weather data and spatially coherent probabilistic projections of daily future weather were used to drive empirically calibrated physical models of thermal and hydrological microclimates. The models were applied to the Lizard Peninsula, United Kingdom, to provide hourly estimates |
---|---|
ISSN: | 1354-1013 1365-2486 |
DOI: | 10.1111/gcb.14876 |