Loading…
Brushed lubricant-impregnated surfaces (BLIS) for long-lasting high condensation heat transfer
Recently, lubricant-impregnated surfaces (LIS) have emerged as a promising condenser surface by facilitating the removal of condensates from the surface. However, LIS has the critical limitation in that lubricant oil is depleted along with the removal of condensates. Such oil depletion is significan...
Saved in:
Published in: | Scientific reports 2020-02, Vol.10 (1), p.2959-2959, Article 2959 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, lubricant-impregnated surfaces (LIS) have emerged as a promising condenser surface by facilitating the removal of condensates from the surface. However, LIS has the critical limitation in that lubricant oil is depleted along with the removal of condensates. Such oil depletion is significantly aggravated under high condensation heat transfer. Here we propose a brushed LIS (BLIS) that can allow the application of LIS under high condensation heat transfer indefinitely by overcoming the previous oil depletion limit. In BLIS, a brush replenishes the depleted oil via physical contact with the rotational tube, while oil is continuously supplied to the brush by capillarity. In addition, BLIS helps enhance heat transfer performance with additional route to droplet removal by brush sweeping. By applying BLIS, we maintain the stable dropwise condensation mode for > 48 hours under high supersaturation levels along with up to 61% heat transfer enhancement compared to hydrophobic surfaces. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-59683-z |