Loading…

Lnc-RP5 Regulates the miR-129-5p/Notch1/PFV Internal Promoter Axis to Promote the Expression of the Prototype Foamy Virus Transactivator Tas

Prototype foamy virus (PFV) is a unique retrovirus that infects animals and humans and does not cause clinical symptoms. Long noncoding RNAs (lncRNAs) are believed to exert multiple regulatory functions during viral infections. Previously, we utilized RNA sequencing (RNA-seq) to characterize and ide...

Full description

Saved in:
Bibliographic Details
Published in:Virologica Sinica 2020-02, Vol.35 (1), p.73-82
Main Authors: Xu, Shanshan, Chen, Liujun, Tang, Yinglian, Yuan, Peipei, Yan, Jun, Zheng, Yingcheng, Huang, Li, Li, Zhi, Sun, Yan, Han, Song, Yin, Jun, Pan, Qin, Peng, Biwen, He, Xiaohua, Liu, Wanhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prototype foamy virus (PFV) is a unique retrovirus that infects animals and humans and does not cause clinical symptoms. Long noncoding RNAs (lncRNAs) are believed to exert multiple regulatory functions during viral infections. Previously, we utilized RNA sequencing (RNA-seq) to characterize and identify the lncRNA lnc-RP5-1086D14.3.1-1:1 (lnc-RP5), which is markedly decreased in PFV-infected cells. However, little is known about the function of lnc-RP5 during PFV infection. In this study, we identified lnc-RP5 as a regulator of the PFV transcriptional transactivator (Tas). Lnc-RP5 enhanced the activity of the PFV internal promoter (IP). The expression of PFV Tas was found to be promoted by lnc-RP5. Moreover, miR-129-5p was found to be involved in the lnc-RP5-mediated promotion of PFV IP activity, while the Notch1 protein suppressed the activity of PFV IP and the expression of Tas. Our results demonstrate that lnc-RP5 promotes the expression of PFV Tas through the miR-129-5p/Notch1/PFV IP axis. This work provides evidence that host lncRNAs can manipulate PFV replication by employing miRNAs and proteins during an early viral infection.
ISSN:1674-0769
1995-820X
DOI:10.1007/s12250-019-00168-3