Loading…
Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis
Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy product...
Saved in:
Published in: | The international journal of biochemistry & cell biology 2020-04, Vol.121, p.105704-105704, Article 105704 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-875180f77f06531dd66d389cc440d4b0b18f808009734b5cca2f7ec73533b5913 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-875180f77f06531dd66d389cc440d4b0b18f808009734b5cca2f7ec73533b5913 |
container_end_page | 105704 |
container_issue | |
container_start_page | 105704 |
container_title | The international journal of biochemistry & cell biology |
container_volume | 121 |
creator | Kalpage, Hasini A. Wan, Junmei Morse, Paul T. Zurek, Matthew P. Turner, Alice A. Khobeir, Antoine Yazdi, Nabil Hakim, Lara Liu, Jenney Vaishnav, Asmita Sanderson, Thomas H. Recanati, Maurice-Andre Grossman, Lawrence I. Lee, Icksoo Edwards, Brian F.P. Hüttemann, Maik |
description | Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis. |
doi_str_mv | 10.1016/j.biocel.2020.105704 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7044036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272520300212</els_id><sourcerecordid>2352050586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-875180f77f06531dd66d389cc440d4b0b18f808009734b5cca2f7ec73533b5913</originalsourceid><addsrcrecordid>eNp9UU2PFCEUJEbjfug_MIajlx75bBgPJmaiq8kmXvRMaKAdJjSvhZ7Nzr-XzqyrXjwQyHv16hVVCL2iZEMJ7d8eNkMEF9KGEbaWpCLiCbqkWulOaiWftjeXqmOKyQt0VeuBEEIl48_RBW8zXHB2iYbdaQG3LzAF7PC8h9pOOSW7RMjv8A7yUiBhGPEUVyBkX6JNOKTgWifjpdhcZygLdnsbMx7T8R7b7LGdYV6gxvoCPRttquHlw32Nvn_6-G33ubv9evNl9-G2c6LnS9ckU01GpUbSS06973vP9dY5IYgXAxmoHjXRhGwVF4N0zrJRBae45HyQW8qv0fsz73wcpuBdaNJtMnOJky0nAzaafzs57s0PuDPNOEF43wjePBAU-HkMdTFTrM3hZHOAYzWMS0YkkXqFijPUFai1hPFxDSVmjccczDkes8ZjzvG0sdd_S3wc-p3Hnz-EZtRdDMVUF0N2wcfSDDce4v83_AJBjqTY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352050586</pqid></control><display><type>article</type><title>Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis</title><source>ScienceDirect Freedom Collection</source><creator>Kalpage, Hasini A. ; Wan, Junmei ; Morse, Paul T. ; Zurek, Matthew P. ; Turner, Alice A. ; Khobeir, Antoine ; Yazdi, Nabil ; Hakim, Lara ; Liu, Jenney ; Vaishnav, Asmita ; Sanderson, Thomas H. ; Recanati, Maurice-Andre ; Grossman, Lawrence I. ; Lee, Icksoo ; Edwards, Brian F.P. ; Hüttemann, Maik</creator><creatorcontrib>Kalpage, Hasini A. ; Wan, Junmei ; Morse, Paul T. ; Zurek, Matthew P. ; Turner, Alice A. ; Khobeir, Antoine ; Yazdi, Nabil ; Hakim, Lara ; Liu, Jenney ; Vaishnav, Asmita ; Sanderson, Thomas H. ; Recanati, Maurice-Andre ; Grossman, Lawrence I. ; Lee, Icksoo ; Edwards, Brian F.P. ; Hüttemann, Maik</creatorcontrib><description>Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2020.105704</identifier><identifier>PMID: 32023432</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Apoptosis ; Cell signaling ; Cytochrome c ; Cytochromes c - metabolism ; Electron Transport - genetics ; Humans ; Phosphorylation ; Reactive oxygen species ; Respiration</subject><ispartof>The international journal of biochemistry & cell biology, 2020-04, Vol.121, p.105704-105704, Article 105704</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-875180f77f06531dd66d389cc440d4b0b18f808009734b5cca2f7ec73533b5913</citedby><cites>FETCH-LOGICAL-c463t-875180f77f06531dd66d389cc440d4b0b18f808009734b5cca2f7ec73533b5913</cites><orcidid>0000-0001-6310-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32023432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalpage, Hasini A.</creatorcontrib><creatorcontrib>Wan, Junmei</creatorcontrib><creatorcontrib>Morse, Paul T.</creatorcontrib><creatorcontrib>Zurek, Matthew P.</creatorcontrib><creatorcontrib>Turner, Alice A.</creatorcontrib><creatorcontrib>Khobeir, Antoine</creatorcontrib><creatorcontrib>Yazdi, Nabil</creatorcontrib><creatorcontrib>Hakim, Lara</creatorcontrib><creatorcontrib>Liu, Jenney</creatorcontrib><creatorcontrib>Vaishnav, Asmita</creatorcontrib><creatorcontrib>Sanderson, Thomas H.</creatorcontrib><creatorcontrib>Recanati, Maurice-Andre</creatorcontrib><creatorcontrib>Grossman, Lawrence I.</creatorcontrib><creatorcontrib>Lee, Icksoo</creatorcontrib><creatorcontrib>Edwards, Brian F.P.</creatorcontrib><creatorcontrib>Hüttemann, Maik</creatorcontrib><title>Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis</title><title>The international journal of biochemistry & cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.</description><subject>Apoptosis</subject><subject>Cell signaling</subject><subject>Cytochrome c</subject><subject>Cytochromes c - metabolism</subject><subject>Electron Transport - genetics</subject><subject>Humans</subject><subject>Phosphorylation</subject><subject>Reactive oxygen species</subject><subject>Respiration</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU2PFCEUJEbjfug_MIajlx75bBgPJmaiq8kmXvRMaKAdJjSvhZ7Nzr-XzqyrXjwQyHv16hVVCL2iZEMJ7d8eNkMEF9KGEbaWpCLiCbqkWulOaiWftjeXqmOKyQt0VeuBEEIl48_RBW8zXHB2iYbdaQG3LzAF7PC8h9pOOSW7RMjv8A7yUiBhGPEUVyBkX6JNOKTgWifjpdhcZygLdnsbMx7T8R7b7LGdYV6gxvoCPRttquHlw32Nvn_6-G33ubv9evNl9-G2c6LnS9ckU01GpUbSS06973vP9dY5IYgXAxmoHjXRhGwVF4N0zrJRBae45HyQW8qv0fsz73wcpuBdaNJtMnOJky0nAzaafzs57s0PuDPNOEF43wjePBAU-HkMdTFTrM3hZHOAYzWMS0YkkXqFijPUFai1hPFxDSVmjccczDkes8ZjzvG0sdd_S3wc-p3Hnz-EZtRdDMVUF0N2wcfSDDce4v83_AJBjqTY</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kalpage, Hasini A.</creator><creator>Wan, Junmei</creator><creator>Morse, Paul T.</creator><creator>Zurek, Matthew P.</creator><creator>Turner, Alice A.</creator><creator>Khobeir, Antoine</creator><creator>Yazdi, Nabil</creator><creator>Hakim, Lara</creator><creator>Liu, Jenney</creator><creator>Vaishnav, Asmita</creator><creator>Sanderson, Thomas H.</creator><creator>Recanati, Maurice-Andre</creator><creator>Grossman, Lawrence I.</creator><creator>Lee, Icksoo</creator><creator>Edwards, Brian F.P.</creator><creator>Hüttemann, Maik</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6310-7081</orcidid></search><sort><creationdate>20200401</creationdate><title>Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis</title><author>Kalpage, Hasini A. ; Wan, Junmei ; Morse, Paul T. ; Zurek, Matthew P. ; Turner, Alice A. ; Khobeir, Antoine ; Yazdi, Nabil ; Hakim, Lara ; Liu, Jenney ; Vaishnav, Asmita ; Sanderson, Thomas H. ; Recanati, Maurice-Andre ; Grossman, Lawrence I. ; Lee, Icksoo ; Edwards, Brian F.P. ; Hüttemann, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-875180f77f06531dd66d389cc440d4b0b18f808009734b5cca2f7ec73533b5913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apoptosis</topic><topic>Cell signaling</topic><topic>Cytochrome c</topic><topic>Cytochromes c - metabolism</topic><topic>Electron Transport - genetics</topic><topic>Humans</topic><topic>Phosphorylation</topic><topic>Reactive oxygen species</topic><topic>Respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalpage, Hasini A.</creatorcontrib><creatorcontrib>Wan, Junmei</creatorcontrib><creatorcontrib>Morse, Paul T.</creatorcontrib><creatorcontrib>Zurek, Matthew P.</creatorcontrib><creatorcontrib>Turner, Alice A.</creatorcontrib><creatorcontrib>Khobeir, Antoine</creatorcontrib><creatorcontrib>Yazdi, Nabil</creatorcontrib><creatorcontrib>Hakim, Lara</creatorcontrib><creatorcontrib>Liu, Jenney</creatorcontrib><creatorcontrib>Vaishnav, Asmita</creatorcontrib><creatorcontrib>Sanderson, Thomas H.</creatorcontrib><creatorcontrib>Recanati, Maurice-Andre</creatorcontrib><creatorcontrib>Grossman, Lawrence I.</creatorcontrib><creatorcontrib>Lee, Icksoo</creatorcontrib><creatorcontrib>Edwards, Brian F.P.</creatorcontrib><creatorcontrib>Hüttemann, Maik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The international journal of biochemistry & cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalpage, Hasini A.</au><au>Wan, Junmei</au><au>Morse, Paul T.</au><au>Zurek, Matthew P.</au><au>Turner, Alice A.</au><au>Khobeir, Antoine</au><au>Yazdi, Nabil</au><au>Hakim, Lara</au><au>Liu, Jenney</au><au>Vaishnav, Asmita</au><au>Sanderson, Thomas H.</au><au>Recanati, Maurice-Andre</au><au>Grossman, Lawrence I.</au><au>Lee, Icksoo</au><au>Edwards, Brian F.P.</au><au>Hüttemann, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis</atitle><jtitle>The international journal of biochemistry & cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>121</volume><spage>105704</spage><epage>105704</epage><pages>105704-105704</pages><artnum>105704</artnum><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>32023432</pmid><doi>10.1016/j.biocel.2020.105704</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6310-7081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1357-2725 |
ispartof | The international journal of biochemistry & cell biology, 2020-04, Vol.121, p.105704-105704, Article 105704 |
issn | 1357-2725 1878-5875 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7044036 |
source | ScienceDirect Freedom Collection |
subjects | Apoptosis Cell signaling Cytochrome c Cytochromes c - metabolism Electron Transport - genetics Humans Phosphorylation Reactive oxygen species Respiration |
title | Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytochrome%20c%20phosphorylation:%20Control%20of%20mitochondrial%20electron%20transport%20chain%20flux%20and%20apoptosis&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Kalpage,%20Hasini%20A.&rft.date=2020-04-01&rft.volume=121&rft.spage=105704&rft.epage=105704&rft.pages=105704-105704&rft.artnum=105704&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2020.105704&rft_dat=%3Cproquest_pubme%3E2352050586%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-875180f77f06531dd66d389cc440d4b0b18f808009734b5cca2f7ec73533b5913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352050586&rft_id=info:pmid/32023432&rfr_iscdi=true |