Loading…

Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability

Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (8), p.4400-4410
Main Authors: Milstein, Michelle L., Cavanaugh, Breyanna L., Roussey, Nicole M., Volland, Stefanie, Williams, David S., Goldberg, Andrew F. X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3
cites cdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3
container_end_page 4410
container_issue 8
container_start_page 4400
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Milstein, Michelle L.
Cavanaugh, Breyanna L.
Roussey, Nicole M.
Volland, Stefanie
Williams, David S.
Goldberg, Andrew F. X.
description Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.
doi_str_mv 10.1073/pnas.1912513117
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929096</jstor_id><sourcerecordid>26929096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EoqVw5gSyxIVLun47viBVFS-piAucLceZdL0kcbCdlfbKX47LluVx8cia3zea-T6EnlNySYnmm2V2-ZIayiTllOoH6JwSQxslDHmIzglhumkFE2foSc47QoiRLXmMzjgjgrZanKMfn9axhFxgwQuksGzrMzdsk_qMM4xD43KGqRsPuE9hDxlP9ZfcDNivae_KmgAPMeG4FkhVcTvBXHAf8jfskt-GAv4X4-YeL9tYYgIPSy14H1wXxlAOT9GjwY0Znt3XC_T13dsv1x-am8_vP15f3TReCF6aDoQ0ruN68EwRR7nTLTOMqE7oVncDFcoTBaJnSmozeN8p3zqpqzdVRxy_QG-Oc5e1m6D3ddHkRrukMLl0sNEF-29nDlt7G_dWE2EopXXA6_sBKX5fIRc7hexhHKsdcc2WccllK4lgFX31H7qLa5rreZXSVCtppKzU5kj5FHNOMJyWocTe5Wvv8rV_8q2Kl3_fcOJ_B1qBF0dgl6vJpz5ThhliFP8JQUiuvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371765955</pqid></control><display><type>article</type><title>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</title><source>PubMed Central (PMC)</source><source>JSTOR</source><creator>Milstein, Michelle L. ; Cavanaugh, Breyanna L. ; Roussey, Nicole M. ; Volland, Stefanie ; Williams, David S. ; Goldberg, Andrew F. X.</creator><creatorcontrib>Milstein, Michelle L. ; Cavanaugh, Breyanna L. ; Roussey, Nicole M. ; Volland, Stefanie ; Williams, David S. ; Goldberg, Andrew F. X.</creatorcontrib><description>Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1912513117</identifier><identifier>PMID: 32041874</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Architecture ; Biological Sciences ; Continuity ; Curvature ; Disks ; Evolution ; Humans ; Mathematical analysis ; Membranes ; Molecular structure ; Morphogenesis ; Mutation ; Peripherin ; Peripherins - chemistry ; Peripherins - genetics ; Peripherins - metabolism ; Phenotypes ; Photons ; Photoreceptors ; Phototransduction ; Polymerization ; Retina ; Retinal Cone Photoreceptor Cells - chemistry ; Retinal Cone Photoreceptor Cells - metabolism ; Retinal degeneration ; Retinal Rod Photoreceptor Cells - chemistry ; Retinal Rod Photoreceptor Cells - metabolism ; Rod Cell Outer Segment - chemistry ; Rod Cell Outer Segment - metabolism ; Rod outer segment membranes ; Self-assembly ; Structural integrity ; Structure-function relationships ; Transmission electron microscopy ; Tubules ; Viability ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.4400-4410</ispartof><rights>Copyright National Academy of Sciences Feb 25, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</citedby><cites>FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</cites><orcidid>0000-0002-3964-5987 ; 0000-0002-7758-3932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32041874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milstein, Michelle L.</creatorcontrib><creatorcontrib>Cavanaugh, Breyanna L.</creatorcontrib><creatorcontrib>Roussey, Nicole M.</creatorcontrib><creatorcontrib>Volland, Stefanie</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Goldberg, Andrew F. X.</creatorcontrib><title>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.</description><subject>Animals</subject><subject>Architecture</subject><subject>Biological Sciences</subject><subject>Continuity</subject><subject>Curvature</subject><subject>Disks</subject><subject>Evolution</subject><subject>Humans</subject><subject>Mathematical analysis</subject><subject>Membranes</subject><subject>Molecular structure</subject><subject>Morphogenesis</subject><subject>Mutation</subject><subject>Peripherin</subject><subject>Peripherins - chemistry</subject><subject>Peripherins - genetics</subject><subject>Peripherins - metabolism</subject><subject>Phenotypes</subject><subject>Photons</subject><subject>Photoreceptors</subject><subject>Phototransduction</subject><subject>Polymerization</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells - chemistry</subject><subject>Retinal Cone Photoreceptor Cells - metabolism</subject><subject>Retinal degeneration</subject><subject>Retinal Rod Photoreceptor Cells - chemistry</subject><subject>Retinal Rod Photoreceptor Cells - metabolism</subject><subject>Rod Cell Outer Segment - chemistry</subject><subject>Rod Cell Outer Segment - metabolism</subject><subject>Rod outer segment membranes</subject><subject>Self-assembly</subject><subject>Structural integrity</subject><subject>Structure-function relationships</subject><subject>Transmission electron microscopy</subject><subject>Tubules</subject><subject>Viability</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctv1DAQxi0EoqVw5gSyxIVLun47viBVFS-piAucLceZdL0kcbCdlfbKX47LluVx8cia3zea-T6EnlNySYnmm2V2-ZIayiTllOoH6JwSQxslDHmIzglhumkFE2foSc47QoiRLXmMzjgjgrZanKMfn9axhFxgwQuksGzrMzdsk_qMM4xD43KGqRsPuE9hDxlP9ZfcDNivae_KmgAPMeG4FkhVcTvBXHAf8jfskt-GAv4X4-YeL9tYYgIPSy14H1wXxlAOT9GjwY0Znt3XC_T13dsv1x-am8_vP15f3TReCF6aDoQ0ruN68EwRR7nTLTOMqE7oVncDFcoTBaJnSmozeN8p3zqpqzdVRxy_QG-Oc5e1m6D3ddHkRrukMLl0sNEF-29nDlt7G_dWE2EopXXA6_sBKX5fIRc7hexhHKsdcc2WccllK4lgFX31H7qLa5rreZXSVCtppKzU5kj5FHNOMJyWocTe5Wvv8rV_8q2Kl3_fcOJ_B1qBF0dgl6vJpz5ThhliFP8JQUiuvQ</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Milstein, Michelle L.</creator><creator>Cavanaugh, Breyanna L.</creator><creator>Roussey, Nicole M.</creator><creator>Volland, Stefanie</creator><creator>Williams, David S.</creator><creator>Goldberg, Andrew F. X.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3964-5987</orcidid><orcidid>https://orcid.org/0000-0002-7758-3932</orcidid></search><sort><creationdate>20200225</creationdate><title>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</title><author>Milstein, Michelle L. ; Cavanaugh, Breyanna L. ; Roussey, Nicole M. ; Volland, Stefanie ; Williams, David S. ; Goldberg, Andrew F. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Architecture</topic><topic>Biological Sciences</topic><topic>Continuity</topic><topic>Curvature</topic><topic>Disks</topic><topic>Evolution</topic><topic>Humans</topic><topic>Mathematical analysis</topic><topic>Membranes</topic><topic>Molecular structure</topic><topic>Morphogenesis</topic><topic>Mutation</topic><topic>Peripherin</topic><topic>Peripherins - chemistry</topic><topic>Peripherins - genetics</topic><topic>Peripherins - metabolism</topic><topic>Phenotypes</topic><topic>Photons</topic><topic>Photoreceptors</topic><topic>Phototransduction</topic><topic>Polymerization</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells - chemistry</topic><topic>Retinal Cone Photoreceptor Cells - metabolism</topic><topic>Retinal degeneration</topic><topic>Retinal Rod Photoreceptor Cells - chemistry</topic><topic>Retinal Rod Photoreceptor Cells - metabolism</topic><topic>Rod Cell Outer Segment - chemistry</topic><topic>Rod Cell Outer Segment - metabolism</topic><topic>Rod outer segment membranes</topic><topic>Self-assembly</topic><topic>Structural integrity</topic><topic>Structure-function relationships</topic><topic>Transmission electron microscopy</topic><topic>Tubules</topic><topic>Viability</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milstein, Michelle L.</creatorcontrib><creatorcontrib>Cavanaugh, Breyanna L.</creatorcontrib><creatorcontrib>Roussey, Nicole M.</creatorcontrib><creatorcontrib>Volland, Stefanie</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Goldberg, Andrew F. X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milstein, Michelle L.</au><au>Cavanaugh, Breyanna L.</au><au>Roussey, Nicole M.</au><au>Volland, Stefanie</au><au>Williams, David S.</au><au>Goldberg, Andrew F. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>117</volume><issue>8</issue><spage>4400</spage><epage>4410</epage><pages>4400-4410</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32041874</pmid><doi>10.1073/pnas.1912513117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3964-5987</orcidid><orcidid>https://orcid.org/0000-0002-7758-3932</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.4400-4410
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049111
source PubMed Central (PMC); JSTOR
subjects Animals
Architecture
Biological Sciences
Continuity
Curvature
Disks
Evolution
Humans
Mathematical analysis
Membranes
Molecular structure
Morphogenesis
Mutation
Peripherin
Peripherins - chemistry
Peripherins - genetics
Peripherins - metabolism
Phenotypes
Photons
Photoreceptors
Phototransduction
Polymerization
Retina
Retinal Cone Photoreceptor Cells - chemistry
Retinal Cone Photoreceptor Cells - metabolism
Retinal degeneration
Retinal Rod Photoreceptor Cells - chemistry
Retinal Rod Photoreceptor Cells - metabolism
Rod Cell Outer Segment - chemistry
Rod Cell Outer Segment - metabolism
Rod outer segment membranes
Self-assembly
Structural integrity
Structure-function relationships
Transmission electron microscopy
Tubules
Viability
Xenopus laevis
title Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistep%20peripherin-2/rds%20self-assembly%20drives%20membrane%20curvature%20for%20outer%20segment%20disk%20architecture%20and%20photoreceptor%20viability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Milstein,%20Michelle%20L.&rft.date=2020-02-25&rft.volume=117&rft.issue=8&rft.spage=4400&rft.epage=4410&rft.pages=4400-4410&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1912513117&rft_dat=%3Cjstor_pubme%3E26929096%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371765955&rft_id=info:pmid/32041874&rft_jstor_id=26929096&rfr_iscdi=true