Loading…
Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability
Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2020-02, Vol.117 (8), p.4400-4410 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3 |
container_end_page | 4410 |
container_issue | 8 |
container_start_page | 4400 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Milstein, Michelle L. Cavanaugh, Breyanna L. Roussey, Nicole M. Volland, Stefanie Williams, David S. Goldberg, Andrew F. X. |
description | Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions. |
doi_str_mv | 10.1073/pnas.1912513117 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929096</jstor_id><sourcerecordid>26929096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EoqVw5gSyxIVLun47viBVFS-piAucLceZdL0kcbCdlfbKX47LluVx8cia3zea-T6EnlNySYnmm2V2-ZIayiTllOoH6JwSQxslDHmIzglhumkFE2foSc47QoiRLXmMzjgjgrZanKMfn9axhFxgwQuksGzrMzdsk_qMM4xD43KGqRsPuE9hDxlP9ZfcDNivae_KmgAPMeG4FkhVcTvBXHAf8jfskt-GAv4X4-YeL9tYYgIPSy14H1wXxlAOT9GjwY0Znt3XC_T13dsv1x-am8_vP15f3TReCF6aDoQ0ruN68EwRR7nTLTOMqE7oVncDFcoTBaJnSmozeN8p3zqpqzdVRxy_QG-Oc5e1m6D3ddHkRrukMLl0sNEF-29nDlt7G_dWE2EopXXA6_sBKX5fIRc7hexhHKsdcc2WccllK4lgFX31H7qLa5rreZXSVCtppKzU5kj5FHNOMJyWocTe5Wvv8rV_8q2Kl3_fcOJ_B1qBF0dgl6vJpz5ThhliFP8JQUiuvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371765955</pqid></control><display><type>article</type><title>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</title><source>PubMed Central (PMC)</source><source>JSTOR</source><creator>Milstein, Michelle L. ; Cavanaugh, Breyanna L. ; Roussey, Nicole M. ; Volland, Stefanie ; Williams, David S. ; Goldberg, Andrew F. X.</creator><creatorcontrib>Milstein, Michelle L. ; Cavanaugh, Breyanna L. ; Roussey, Nicole M. ; Volland, Stefanie ; Williams, David S. ; Goldberg, Andrew F. X.</creatorcontrib><description>Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1912513117</identifier><identifier>PMID: 32041874</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Architecture ; Biological Sciences ; Continuity ; Curvature ; Disks ; Evolution ; Humans ; Mathematical analysis ; Membranes ; Molecular structure ; Morphogenesis ; Mutation ; Peripherin ; Peripherins - chemistry ; Peripherins - genetics ; Peripherins - metabolism ; Phenotypes ; Photons ; Photoreceptors ; Phototransduction ; Polymerization ; Retina ; Retinal Cone Photoreceptor Cells - chemistry ; Retinal Cone Photoreceptor Cells - metabolism ; Retinal degeneration ; Retinal Rod Photoreceptor Cells - chemistry ; Retinal Rod Photoreceptor Cells - metabolism ; Rod Cell Outer Segment - chemistry ; Rod Cell Outer Segment - metabolism ; Rod outer segment membranes ; Self-assembly ; Structural integrity ; Structure-function relationships ; Transmission electron microscopy ; Tubules ; Viability ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.4400-4410</ispartof><rights>Copyright National Academy of Sciences Feb 25, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</citedby><cites>FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</cites><orcidid>0000-0002-3964-5987 ; 0000-0002-7758-3932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32041874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milstein, Michelle L.</creatorcontrib><creatorcontrib>Cavanaugh, Breyanna L.</creatorcontrib><creatorcontrib>Roussey, Nicole M.</creatorcontrib><creatorcontrib>Volland, Stefanie</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Goldberg, Andrew F. X.</creatorcontrib><title>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.</description><subject>Animals</subject><subject>Architecture</subject><subject>Biological Sciences</subject><subject>Continuity</subject><subject>Curvature</subject><subject>Disks</subject><subject>Evolution</subject><subject>Humans</subject><subject>Mathematical analysis</subject><subject>Membranes</subject><subject>Molecular structure</subject><subject>Morphogenesis</subject><subject>Mutation</subject><subject>Peripherin</subject><subject>Peripherins - chemistry</subject><subject>Peripherins - genetics</subject><subject>Peripherins - metabolism</subject><subject>Phenotypes</subject><subject>Photons</subject><subject>Photoreceptors</subject><subject>Phototransduction</subject><subject>Polymerization</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells - chemistry</subject><subject>Retinal Cone Photoreceptor Cells - metabolism</subject><subject>Retinal degeneration</subject><subject>Retinal Rod Photoreceptor Cells - chemistry</subject><subject>Retinal Rod Photoreceptor Cells - metabolism</subject><subject>Rod Cell Outer Segment - chemistry</subject><subject>Rod Cell Outer Segment - metabolism</subject><subject>Rod outer segment membranes</subject><subject>Self-assembly</subject><subject>Structural integrity</subject><subject>Structure-function relationships</subject><subject>Transmission electron microscopy</subject><subject>Tubules</subject><subject>Viability</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctv1DAQxi0EoqVw5gSyxIVLun47viBVFS-piAucLceZdL0kcbCdlfbKX47LluVx8cia3zea-T6EnlNySYnmm2V2-ZIayiTllOoH6JwSQxslDHmIzglhumkFE2foSc47QoiRLXmMzjgjgrZanKMfn9axhFxgwQuksGzrMzdsk_qMM4xD43KGqRsPuE9hDxlP9ZfcDNivae_KmgAPMeG4FkhVcTvBXHAf8jfskt-GAv4X4-YeL9tYYgIPSy14H1wXxlAOT9GjwY0Znt3XC_T13dsv1x-am8_vP15f3TReCF6aDoQ0ruN68EwRR7nTLTOMqE7oVncDFcoTBaJnSmozeN8p3zqpqzdVRxy_QG-Oc5e1m6D3ddHkRrukMLl0sNEF-29nDlt7G_dWE2EopXXA6_sBKX5fIRc7hexhHKsdcc2WccllK4lgFX31H7qLa5rreZXSVCtppKzU5kj5FHNOMJyWocTe5Wvv8rV_8q2Kl3_fcOJ_B1qBF0dgl6vJpz5ThhliFP8JQUiuvQ</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Milstein, Michelle L.</creator><creator>Cavanaugh, Breyanna L.</creator><creator>Roussey, Nicole M.</creator><creator>Volland, Stefanie</creator><creator>Williams, David S.</creator><creator>Goldberg, Andrew F. X.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3964-5987</orcidid><orcidid>https://orcid.org/0000-0002-7758-3932</orcidid></search><sort><creationdate>20200225</creationdate><title>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</title><author>Milstein, Michelle L. ; Cavanaugh, Breyanna L. ; Roussey, Nicole M. ; Volland, Stefanie ; Williams, David S. ; Goldberg, Andrew F. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Architecture</topic><topic>Biological Sciences</topic><topic>Continuity</topic><topic>Curvature</topic><topic>Disks</topic><topic>Evolution</topic><topic>Humans</topic><topic>Mathematical analysis</topic><topic>Membranes</topic><topic>Molecular structure</topic><topic>Morphogenesis</topic><topic>Mutation</topic><topic>Peripherin</topic><topic>Peripherins - chemistry</topic><topic>Peripherins - genetics</topic><topic>Peripherins - metabolism</topic><topic>Phenotypes</topic><topic>Photons</topic><topic>Photoreceptors</topic><topic>Phototransduction</topic><topic>Polymerization</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells - chemistry</topic><topic>Retinal Cone Photoreceptor Cells - metabolism</topic><topic>Retinal degeneration</topic><topic>Retinal Rod Photoreceptor Cells - chemistry</topic><topic>Retinal Rod Photoreceptor Cells - metabolism</topic><topic>Rod Cell Outer Segment - chemistry</topic><topic>Rod Cell Outer Segment - metabolism</topic><topic>Rod outer segment membranes</topic><topic>Self-assembly</topic><topic>Structural integrity</topic><topic>Structure-function relationships</topic><topic>Transmission electron microscopy</topic><topic>Tubules</topic><topic>Viability</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milstein, Michelle L.</creatorcontrib><creatorcontrib>Cavanaugh, Breyanna L.</creatorcontrib><creatorcontrib>Roussey, Nicole M.</creatorcontrib><creatorcontrib>Volland, Stefanie</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Goldberg, Andrew F. X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milstein, Michelle L.</au><au>Cavanaugh, Breyanna L.</au><au>Roussey, Nicole M.</au><au>Volland, Stefanie</au><au>Williams, David S.</au><au>Goldberg, Andrew F. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>117</volume><issue>8</issue><spage>4400</spage><epage>4410</epage><pages>4400-4410</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Rod and cone photoreceptor outer segment (OS) structural integrity is essential for normal vision; disruptions contribute to a broad variety of retinal ciliopathies. OSs possess many hundreds of stacked membranous disks, which capture photons and scaffold the phototransduction cascade. Although the molecular basis of OS structure remains unresolved, recent studies suggest that the photoreceptor-specific tetraspanin, peripherin-2/rds (P/rds), may contribute to the highly curved rim domains at disk edges. Here, we demonstrate that tetrameric P/rds self-assembly is required for generating high-curvature membranes in cellulo, implicating the noncovalent tetramer as a minimal unit of function. P/rds activity was promoted by disulfide-mediated tetramer polymerization, which transformed localized regions of curvature into high-curvature tubules of extended lengths. Transmission electron microscopy visualization of P/rds purified from OS membranes revealed disulfide-linked tetramer chains up to 100 nm long, suggesting that chains maintain membrane curvature continuity over extended distances. We tested this idea in Xenopus laevis photoreceptors, and found that transgenic expression of nonchainforming P/rds generated abundant high-curvature OS membranes, whichwere improperly but specifically organized as ectopic incisures and disk rims. These striking phenotypes demonstrate the importance of P/rds tetramer chain formation for the continuity of rim formation during disk morphogenesis. Overall, this study advances understanding of the normal structure and function of P/rds for OS architecture and biogenesis, and clarifies how pathogenic loss-of-function mutations in P/rds cause photoreceptor structural defects to trigger progressive retinal degenerations. It also introduces the possibility that other tetraspanins may generate or sense membrane curvature in support of diverse biological functions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32041874</pmid><doi>10.1073/pnas.1912513117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3964-5987</orcidid><orcidid>https://orcid.org/0000-0002-7758-3932</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-02, Vol.117 (8), p.4400-4410 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049111 |
source | PubMed Central (PMC); JSTOR |
subjects | Animals Architecture Biological Sciences Continuity Curvature Disks Evolution Humans Mathematical analysis Membranes Molecular structure Morphogenesis Mutation Peripherin Peripherins - chemistry Peripherins - genetics Peripherins - metabolism Phenotypes Photons Photoreceptors Phototransduction Polymerization Retina Retinal Cone Photoreceptor Cells - chemistry Retinal Cone Photoreceptor Cells - metabolism Retinal degeneration Retinal Rod Photoreceptor Cells - chemistry Retinal Rod Photoreceptor Cells - metabolism Rod Cell Outer Segment - chemistry Rod Cell Outer Segment - metabolism Rod outer segment membranes Self-assembly Structural integrity Structure-function relationships Transmission electron microscopy Tubules Viability Xenopus laevis |
title | Multistep peripherin-2/rds self-assembly drives membrane curvature for outer segment disk architecture and photoreceptor viability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistep%20peripherin-2/rds%20self-assembly%20drives%20membrane%20curvature%20for%20outer%20segment%20disk%20architecture%20and%20photoreceptor%20viability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Milstein,%20Michelle%20L.&rft.date=2020-02-25&rft.volume=117&rft.issue=8&rft.spage=4400&rft.epage=4410&rft.pages=4400-4410&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1912513117&rft_dat=%3Cjstor_pubme%3E26929096%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-be459ab37fc260a13a7829206b4787bf146c06e4d26579fccb6c8a5712559a0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371765955&rft_id=info:pmid/32041874&rft_jstor_id=26929096&rfr_iscdi=true |