Loading…

Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis

The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry sil...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2020-03, Vol.105, p.146-158
Main Authors: Gupta, Prerak, Lorentz, Katherine L., Haskett, Darren G., Cunnane, Eoghan M., Ramaswamy, Aneesh K., Weinbaum, Justin S., Vorp, David A., Mandal, Biman B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-727f0c937675df03040c9ca51bf17b2a8251541f5e5af4839b7c495ad18d9a823
cites cdi_FETCH-LOGICAL-c491t-727f0c937675df03040c9ca51bf17b2a8251541f5e5af4839b7c495ad18d9a823
container_end_page 158
container_issue
container_start_page 146
container_title Acta biomaterialia
container_volume 105
creator Gupta, Prerak
Lorentz, Katherine L.
Haskett, Darren G.
Cunnane, Eoghan M.
Ramaswamy, Aneesh K.
Weinbaum, Justin S.
Vorp, David A.
Mandal, Biman B.
description The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) – which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts’ viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. Clinical ‘off the shelf’ implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility. [Display omitted]
doi_str_mv 10.1016/j.actbio.2020.01.020
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120300349</els_id><sourcerecordid>2431028707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-727f0c937675df03040c9ca51bf17b2a8251541f5e5af4839b7c495ad18d9a823</originalsourceid><addsrcrecordid>eNp9UU2P1SAUbYzG-dB_YAyJ61ZoS6EuTHSi4ySTuNE1uaXwvE8ePIE2mZV_XZo3jrpxdbice8-5cKrqBaMNo2x4vW9A5wlD09KWNpQ1BR5V50wKWQs-yMflLPq2FnRgZ9VFSntKO8la-bQ669jIJR-H8-rnewzRpBAnmJwhCd13sotgcyI2RJIO4ByZEQ4mm0hWSHpxEEnGlBZDjN-hNyai3xE4Hh1qyBh8ekNuPFkxx0DAzwS3Yg3ELl5vPLhyDe4uYXpWPbHgknl-j5fV148fvlx9qm8_X99cvbutdT-yXItWWKrHTgyCz5Z2tC-VBs4my8TUgmw54z2z3HCwvezGSZRBDjOT81jY7rJ6e9I9LtPBzNr4HMGpY8QDxDsVANW_jMdvahdWJSgvZpvAq3uBGH4sJmW1D0ssr0iq7TtGWymoKF39qUvHkFI09sGBUbXFpvbqFJvaYlOUqQJl7OXf2z0M_c7pz_qm_NGKJqqk0XhtZoxGZzUH_L_DL76Hrig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431028707</pqid></control><display><type>article</type><title>Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gupta, Prerak ; Lorentz, Katherine L. ; Haskett, Darren G. ; Cunnane, Eoghan M. ; Ramaswamy, Aneesh K. ; Weinbaum, Justin S. ; Vorp, David A. ; Mandal, Biman B.</creator><creatorcontrib>Gupta, Prerak ; Lorentz, Katherine L. ; Haskett, Darren G. ; Cunnane, Eoghan M. ; Ramaswamy, Aneesh K. ; Weinbaum, Justin S. ; Vorp, David A. ; Mandal, Biman B.</creatorcontrib><description>The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) – which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts’ viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. Clinical ‘off the shelf’ implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.01.020</identifier><identifier>PMID: 31958596</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Absorbable Implants ; Adipose tissue ; Adult ; Amino acids ; Animals ; Aorta ; Biocompatibility ; Biodegradation ; Biomaterials ; Biomedical materials ; Biomimetics ; Biopolymers ; Blood Vessel Prosthesis Implantation ; Cell Proliferation ; Extracellular matrix ; Extracellular Matrix - metabolism ; Fabrication ; Female ; Functional analysis ; Grafting ; Humans ; Implantation ; Infiltration ; Non-mulberry silk ; Rats, Inbred Lew ; Seepage ; Silk ; Silk - chemistry ; Surgical implants ; Tensile Strength ; Tissue analysis ; Tissue Engineering ; Tissue remodeling ; Tissue Scaffolds - chemistry ; Vascular grafts ; Vascular tissue</subject><ispartof>Acta biomaterialia, 2020-03, Vol.105, p.146-158</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Mar 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-727f0c937675df03040c9ca51bf17b2a8251541f5e5af4839b7c495ad18d9a823</citedby><cites>FETCH-LOGICAL-c491t-727f0c937675df03040c9ca51bf17b2a8251541f5e5af4839b7c495ad18d9a823</cites><orcidid>0000-0002-0626-6083 ; 0000-0003-3936-4621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31958596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Prerak</creatorcontrib><creatorcontrib>Lorentz, Katherine L.</creatorcontrib><creatorcontrib>Haskett, Darren G.</creatorcontrib><creatorcontrib>Cunnane, Eoghan M.</creatorcontrib><creatorcontrib>Ramaswamy, Aneesh K.</creatorcontrib><creatorcontrib>Weinbaum, Justin S.</creatorcontrib><creatorcontrib>Vorp, David A.</creatorcontrib><creatorcontrib>Mandal, Biman B.</creatorcontrib><title>Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) – which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts’ viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. Clinical ‘off the shelf’ implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility. [Display omitted]</description><subject>Absorbable Implants</subject><subject>Adipose tissue</subject><subject>Adult</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Aorta</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Biopolymers</subject><subject>Blood Vessel Prosthesis Implantation</subject><subject>Cell Proliferation</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fabrication</subject><subject>Female</subject><subject>Functional analysis</subject><subject>Grafting</subject><subject>Humans</subject><subject>Implantation</subject><subject>Infiltration</subject><subject>Non-mulberry silk</subject><subject>Rats, Inbred Lew</subject><subject>Seepage</subject><subject>Silk</subject><subject>Silk - chemistry</subject><subject>Surgical implants</subject><subject>Tensile Strength</subject><subject>Tissue analysis</subject><subject>Tissue Engineering</subject><subject>Tissue remodeling</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Vascular grafts</subject><subject>Vascular tissue</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU2P1SAUbYzG-dB_YAyJ61ZoS6EuTHSi4ySTuNE1uaXwvE8ePIE2mZV_XZo3jrpxdbice8-5cKrqBaMNo2x4vW9A5wlD09KWNpQ1BR5V50wKWQs-yMflLPq2FnRgZ9VFSntKO8la-bQ669jIJR-H8-rnewzRpBAnmJwhCd13sotgcyI2RJIO4ByZEQ4mm0hWSHpxEEnGlBZDjN-hNyai3xE4Hh1qyBh8ekNuPFkxx0DAzwS3Yg3ELl5vPLhyDe4uYXpWPbHgknl-j5fV148fvlx9qm8_X99cvbutdT-yXItWWKrHTgyCz5Z2tC-VBs4my8TUgmw54z2z3HCwvezGSZRBDjOT81jY7rJ6e9I9LtPBzNr4HMGpY8QDxDsVANW_jMdvahdWJSgvZpvAq3uBGH4sJmW1D0ssr0iq7TtGWymoKF39qUvHkFI09sGBUbXFpvbqFJvaYlOUqQJl7OXf2z0M_c7pz_qm_NGKJqqk0XhtZoxGZzUH_L_DL76Hrig</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Gupta, Prerak</creator><creator>Lorentz, Katherine L.</creator><creator>Haskett, Darren G.</creator><creator>Cunnane, Eoghan M.</creator><creator>Ramaswamy, Aneesh K.</creator><creator>Weinbaum, Justin S.</creator><creator>Vorp, David A.</creator><creator>Mandal, Biman B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0626-6083</orcidid><orcidid>https://orcid.org/0000-0003-3936-4621</orcidid></search><sort><creationdate>20200315</creationdate><title>Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis</title><author>Gupta, Prerak ; Lorentz, Katherine L. ; Haskett, Darren G. ; Cunnane, Eoghan M. ; Ramaswamy, Aneesh K. ; Weinbaum, Justin S. ; Vorp, David A. ; Mandal, Biman B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-727f0c937675df03040c9ca51bf17b2a8251541f5e5af4839b7c495ad18d9a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbable Implants</topic><topic>Adipose tissue</topic><topic>Adult</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Aorta</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Biopolymers</topic><topic>Blood Vessel Prosthesis Implantation</topic><topic>Cell Proliferation</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fabrication</topic><topic>Female</topic><topic>Functional analysis</topic><topic>Grafting</topic><topic>Humans</topic><topic>Implantation</topic><topic>Infiltration</topic><topic>Non-mulberry silk</topic><topic>Rats, Inbred Lew</topic><topic>Seepage</topic><topic>Silk</topic><topic>Silk - chemistry</topic><topic>Surgical implants</topic><topic>Tensile Strength</topic><topic>Tissue analysis</topic><topic>Tissue Engineering</topic><topic>Tissue remodeling</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Vascular grafts</topic><topic>Vascular tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Prerak</creatorcontrib><creatorcontrib>Lorentz, Katherine L.</creatorcontrib><creatorcontrib>Haskett, Darren G.</creatorcontrib><creatorcontrib>Cunnane, Eoghan M.</creatorcontrib><creatorcontrib>Ramaswamy, Aneesh K.</creatorcontrib><creatorcontrib>Weinbaum, Justin S.</creatorcontrib><creatorcontrib>Vorp, David A.</creatorcontrib><creatorcontrib>Mandal, Biman B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Prerak</au><au>Lorentz, Katherine L.</au><au>Haskett, Darren G.</au><au>Cunnane, Eoghan M.</au><au>Ramaswamy, Aneesh K.</au><au>Weinbaum, Justin S.</au><au>Vorp, David A.</au><au>Mandal, Biman B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-03-15</date><risdate>2020</risdate><volume>105</volume><spage>146</spage><epage>158</epage><pages>146-158</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) – which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts’ viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. Clinical ‘off the shelf’ implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31958596</pmid><doi>10.1016/j.actbio.2020.01.020</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0626-6083</orcidid><orcidid>https://orcid.org/0000-0003-3936-4621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2020-03, Vol.105, p.146-158
issn 1742-7061
1878-7568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050402
source ScienceDirect Freedom Collection 2022-2024
subjects Absorbable Implants
Adipose tissue
Adult
Amino acids
Animals
Aorta
Biocompatibility
Biodegradation
Biomaterials
Biomedical materials
Biomimetics
Biopolymers
Blood Vessel Prosthesis Implantation
Cell Proliferation
Extracellular matrix
Extracellular Matrix - metabolism
Fabrication
Female
Functional analysis
Grafting
Humans
Implantation
Infiltration
Non-mulberry silk
Rats, Inbred Lew
Seepage
Silk
Silk - chemistry
Surgical implants
Tensile Strength
Tissue analysis
Tissue Engineering
Tissue remodeling
Tissue Scaffolds - chemistry
Vascular grafts
Vascular tissue
title Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioresorbable%20silk%20grafts%20for%20small%20diameter%20vascular%20tissue%20engineering%20applications:%20In%20vitro%20and%20in%20vivo%20functional%20analysis&rft.jtitle=Acta%20biomaterialia&rft.au=Gupta,%20Prerak&rft.date=2020-03-15&rft.volume=105&rft.spage=146&rft.epage=158&rft.pages=146-158&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.01.020&rft_dat=%3Cproquest_pubme%3E2431028707%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-727f0c937675df03040c9ca51bf17b2a8251541f5e5af4839b7c495ad18d9a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2431028707&rft_id=info:pmid/31958596&rfr_iscdi=true