Loading…
Ancestry-agnostic estimation of DNA sample contamination from sequence reads
Detecting and estimating DNA sample contamination are important steps to ensure high-quality genotype calls and reliable downstream analysis. Existing methods rely on population allele frequency information for accurate estimation of contamination rates. Correctly specifying population allele freque...
Saved in:
Published in: | Genome research 2020-02, Vol.30 (2), p.185-194 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-f113a8b03a715c098b6bf865f90d6f375390742196def8e9611acfe65ade57eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-f113a8b03a715c098b6bf865f90d6f375390742196def8e9611acfe65ade57eb3 |
container_end_page | 194 |
container_issue | 2 |
container_start_page | 185 |
container_title | Genome research |
container_volume | 30 |
creator | Zhang, Fan Flickinger, Matthew Taliun, Sarah A Gagliano Abecasis, Gonçalo R Scott, Laura J McCaroll, Steven A Pato, Carlos N Boehnke, Michael Kang, Hyun Min |
description | Detecting and estimating DNA sample contamination are important steps to ensure high-quality genotype calls and reliable downstream analysis. Existing methods rely on population allele frequency information for accurate estimation of contamination rates. Correctly specifying population allele frequencies for each individual in early stage of sequence analysis is impractical or even impossible for large-scale sequencing centers that simultaneously process samples from multiple studies across diverse populations. On the other hand, incorrectly specified allele frequencies may result in substantial bias in estimated contamination rates. For example, we observed that existing methods often fail to identify 10% contaminated samples at a typical 3% contamination exclusion threshold when genetic ancestry is misspecified. Such an incomplete screening of contaminated samples substantially inflates the estimated rate of genotyping errors even in deeply sequenced genomes and exomes. We propose a robust statistical method that accurately estimates DNA contamination and is agnostic to genetic ancestry of the intended or contaminating sample. Our method integrates the estimation of genetic ancestry and DNA contamination in a unified likelihood framework by leveraging individual-specific allele frequencies projected from reference genotypes onto principal component coordinates. Our method can also be used for estimating genetic ancestries, similar to LASER or
, but simultaneously accounting for potential contamination. We demonstrate that our method robustly estimates contamination rates and genetic ancestries across populations and contamination scenarios. We further demonstrate that, in the presence of contamination, genetic ancestry inference can be substantially biased with existing methods that ignore contamination, while our method corrects for such biases. |
doi_str_mv | 10.1101/gr.246934.118 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379603306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f113a8b03a715c098b6bf865f90d6f375390742196def8e9611acfe65ade57eb3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMotlaPXmXBi5etk2aTTS5CqZ9Q9KLnkM0mdctuUpOt0P_eSGtRT8mb-fGYx0PoHMMYY8DXizCeFEyQIkl-gIaYFiKnaXKY_sB5LoDiATqJcQkApOD8GA0IFhxoCUM0nzptYh82uVo4H_tGZ0k2neob7zJvs9vnaRZVt2pNpr3rVde47c4G32XRfKxNcsiCUXU8RUdWtdGc7d4Reru_e5095vOXh6fZdJ7rAtM-txgTxSsgqsRUg-AVqyxn1AqomSUlJQLKYoIFq43lRjCMlbaGUVUbWpqKjNDN1ne1rjpTa-P6oFq5CunusJFeNfLvxjXvcuE_ZQkUKIFkcLUzCD4FiL3smqhN2ypn_DrKCSloIrmYJPTyH7r06-BSvESVggEhwBKVbykdfIzB2P0xGOR3T3IR5LanJHniL34n2NM_xZAvaH-OsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379603306</pqid></control><display><type>article</type><title>Ancestry-agnostic estimation of DNA sample contamination from sequence reads</title><source>Freely Accessible Science Journals</source><source>PubMed Central</source><creator>Zhang, Fan ; Flickinger, Matthew ; Taliun, Sarah A Gagliano ; Abecasis, Gonçalo R ; Scott, Laura J ; McCaroll, Steven A ; Pato, Carlos N ; Boehnke, Michael ; Kang, Hyun Min</creator><creatorcontrib>Zhang, Fan ; Flickinger, Matthew ; Taliun, Sarah A Gagliano ; Abecasis, Gonçalo R ; Scott, Laura J ; McCaroll, Steven A ; Pato, Carlos N ; Boehnke, Michael ; Kang, Hyun Min ; InPSYght Psychiatric Genetics Consortium ; InPSYght Psychiatric Genetics Consortium</creatorcontrib><description>Detecting and estimating DNA sample contamination are important steps to ensure high-quality genotype calls and reliable downstream analysis. Existing methods rely on population allele frequency information for accurate estimation of contamination rates. Correctly specifying population allele frequencies for each individual in early stage of sequence analysis is impractical or even impossible for large-scale sequencing centers that simultaneously process samples from multiple studies across diverse populations. On the other hand, incorrectly specified allele frequencies may result in substantial bias in estimated contamination rates. For example, we observed that existing methods often fail to identify 10% contaminated samples at a typical 3% contamination exclusion threshold when genetic ancestry is misspecified. Such an incomplete screening of contaminated samples substantially inflates the estimated rate of genotyping errors even in deeply sequenced genomes and exomes. We propose a robust statistical method that accurately estimates DNA contamination and is agnostic to genetic ancestry of the intended or contaminating sample. Our method integrates the estimation of genetic ancestry and DNA contamination in a unified likelihood framework by leveraging individual-specific allele frequencies projected from reference genotypes onto principal component coordinates. Our method can also be used for estimating genetic ancestries, similar to LASER or
, but simultaneously accounting for potential contamination. We demonstrate that our method robustly estimates contamination rates and genetic ancestries across populations and contamination scenarios. We further demonstrate that, in the presence of contamination, genetic ancestry inference can be substantially biased with existing methods that ignore contamination, while our method corrects for such biases.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.246934.118</identifier><identifier>PMID: 31980570</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Alleles ; Contamination ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA Contamination ; Exome - genetics ; Gene frequency ; Gene Frequency - genetics ; Genetic testing ; Genetics, Population ; Genomes ; Genotype ; Genotypes ; Genotyping ; Genotyping Techniques - standards ; Humans ; Method ; Methods ; Nucleotide sequence ; Polymorphism, Single Nucleotide - genetics ; Population genetics ; Population studies ; Sequence analysis ; Sequence Analysis, DNA</subject><ispartof>Genome research, 2020-02, Vol.30 (2), p.185-194</ispartof><rights>2020 Zhang et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Feb 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f113a8b03a715c098b6bf865f90d6f375390742196def8e9611acfe65ade57eb3</citedby><cites>FETCH-LOGICAL-c415t-f113a8b03a715c098b6bf865f90d6f375390742196def8e9611acfe65ade57eb3</cites><orcidid>0000-0002-3631-3979 ; 0000-0002-6802-4514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050530/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050530/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31980570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Flickinger, Matthew</creatorcontrib><creatorcontrib>Taliun, Sarah A Gagliano</creatorcontrib><creatorcontrib>Abecasis, Gonçalo R</creatorcontrib><creatorcontrib>Scott, Laura J</creatorcontrib><creatorcontrib>McCaroll, Steven A</creatorcontrib><creatorcontrib>Pato, Carlos N</creatorcontrib><creatorcontrib>Boehnke, Michael</creatorcontrib><creatorcontrib>Kang, Hyun Min</creatorcontrib><creatorcontrib>InPSYght Psychiatric Genetics Consortium</creatorcontrib><creatorcontrib>InPSYght Psychiatric Genetics Consortium</creatorcontrib><title>Ancestry-agnostic estimation of DNA sample contamination from sequence reads</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Detecting and estimating DNA sample contamination are important steps to ensure high-quality genotype calls and reliable downstream analysis. Existing methods rely on population allele frequency information for accurate estimation of contamination rates. Correctly specifying population allele frequencies for each individual in early stage of sequence analysis is impractical or even impossible for large-scale sequencing centers that simultaneously process samples from multiple studies across diverse populations. On the other hand, incorrectly specified allele frequencies may result in substantial bias in estimated contamination rates. For example, we observed that existing methods often fail to identify 10% contaminated samples at a typical 3% contamination exclusion threshold when genetic ancestry is misspecified. Such an incomplete screening of contaminated samples substantially inflates the estimated rate of genotyping errors even in deeply sequenced genomes and exomes. We propose a robust statistical method that accurately estimates DNA contamination and is agnostic to genetic ancestry of the intended or contaminating sample. Our method integrates the estimation of genetic ancestry and DNA contamination in a unified likelihood framework by leveraging individual-specific allele frequencies projected from reference genotypes onto principal component coordinates. Our method can also be used for estimating genetic ancestries, similar to LASER or
, but simultaneously accounting for potential contamination. We demonstrate that our method robustly estimates contamination rates and genetic ancestries across populations and contamination scenarios. We further demonstrate that, in the presence of contamination, genetic ancestry inference can be substantially biased with existing methods that ignore contamination, while our method corrects for such biases.</description><subject>Alleles</subject><subject>Contamination</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA Contamination</subject><subject>Exome - genetics</subject><subject>Gene frequency</subject><subject>Gene Frequency - genetics</subject><subject>Genetic testing</subject><subject>Genetics, Population</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Genotyping Techniques - standards</subject><subject>Humans</subject><subject>Method</subject><subject>Methods</subject><subject>Nucleotide sequence</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Sequence analysis</subject><subject>Sequence Analysis, DNA</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxYMotlaPXmXBi5etk2aTTS5CqZ9Q9KLnkM0mdctuUpOt0P_eSGtRT8mb-fGYx0PoHMMYY8DXizCeFEyQIkl-gIaYFiKnaXKY_sB5LoDiATqJcQkApOD8GA0IFhxoCUM0nzptYh82uVo4H_tGZ0k2neob7zJvs9vnaRZVt2pNpr3rVde47c4G32XRfKxNcsiCUXU8RUdWtdGc7d4Reru_e5095vOXh6fZdJ7rAtM-txgTxSsgqsRUg-AVqyxn1AqomSUlJQLKYoIFq43lRjCMlbaGUVUbWpqKjNDN1ne1rjpTa-P6oFq5CunusJFeNfLvxjXvcuE_ZQkUKIFkcLUzCD4FiL3smqhN2ypn_DrKCSloIrmYJPTyH7r06-BSvESVggEhwBKVbykdfIzB2P0xGOR3T3IR5LanJHniL34n2NM_xZAvaH-OsQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhang, Fan</creator><creator>Flickinger, Matthew</creator><creator>Taliun, Sarah A Gagliano</creator><creator>Abecasis, Gonçalo R</creator><creator>Scott, Laura J</creator><creator>McCaroll, Steven A</creator><creator>Pato, Carlos N</creator><creator>Boehnke, Michael</creator><creator>Kang, Hyun Min</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3631-3979</orcidid><orcidid>https://orcid.org/0000-0002-6802-4514</orcidid></search><sort><creationdate>20200201</creationdate><title>Ancestry-agnostic estimation of DNA sample contamination from sequence reads</title><author>Zhang, Fan ; Flickinger, Matthew ; Taliun, Sarah A Gagliano ; Abecasis, Gonçalo R ; Scott, Laura J ; McCaroll, Steven A ; Pato, Carlos N ; Boehnke, Michael ; Kang, Hyun Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f113a8b03a715c098b6bf865f90d6f375390742196def8e9611acfe65ade57eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Contamination</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA Contamination</topic><topic>Exome - genetics</topic><topic>Gene frequency</topic><topic>Gene Frequency - genetics</topic><topic>Genetic testing</topic><topic>Genetics, Population</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Genotyping Techniques - standards</topic><topic>Humans</topic><topic>Method</topic><topic>Methods</topic><topic>Nucleotide sequence</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Sequence analysis</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Flickinger, Matthew</creatorcontrib><creatorcontrib>Taliun, Sarah A Gagliano</creatorcontrib><creatorcontrib>Abecasis, Gonçalo R</creatorcontrib><creatorcontrib>Scott, Laura J</creatorcontrib><creatorcontrib>McCaroll, Steven A</creatorcontrib><creatorcontrib>Pato, Carlos N</creatorcontrib><creatorcontrib>Boehnke, Michael</creatorcontrib><creatorcontrib>Kang, Hyun Min</creatorcontrib><creatorcontrib>InPSYght Psychiatric Genetics Consortium</creatorcontrib><creatorcontrib>InPSYght Psychiatric Genetics Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Flickinger, Matthew</au><au>Taliun, Sarah A Gagliano</au><au>Abecasis, Gonçalo R</au><au>Scott, Laura J</au><au>McCaroll, Steven A</au><au>Pato, Carlos N</au><au>Boehnke, Michael</au><au>Kang, Hyun Min</au><aucorp>InPSYght Psychiatric Genetics Consortium</aucorp><aucorp>InPSYght Psychiatric Genetics Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ancestry-agnostic estimation of DNA sample contamination from sequence reads</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>185</spage><epage>194</epage><pages>185-194</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Detecting and estimating DNA sample contamination are important steps to ensure high-quality genotype calls and reliable downstream analysis. Existing methods rely on population allele frequency information for accurate estimation of contamination rates. Correctly specifying population allele frequencies for each individual in early stage of sequence analysis is impractical or even impossible for large-scale sequencing centers that simultaneously process samples from multiple studies across diverse populations. On the other hand, incorrectly specified allele frequencies may result in substantial bias in estimated contamination rates. For example, we observed that existing methods often fail to identify 10% contaminated samples at a typical 3% contamination exclusion threshold when genetic ancestry is misspecified. Such an incomplete screening of contaminated samples substantially inflates the estimated rate of genotyping errors even in deeply sequenced genomes and exomes. We propose a robust statistical method that accurately estimates DNA contamination and is agnostic to genetic ancestry of the intended or contaminating sample. Our method integrates the estimation of genetic ancestry and DNA contamination in a unified likelihood framework by leveraging individual-specific allele frequencies projected from reference genotypes onto principal component coordinates. Our method can also be used for estimating genetic ancestries, similar to LASER or
, but simultaneously accounting for potential contamination. We demonstrate that our method robustly estimates contamination rates and genetic ancestries across populations and contamination scenarios. We further demonstrate that, in the presence of contamination, genetic ancestry inference can be substantially biased with existing methods that ignore contamination, while our method corrects for such biases.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>31980570</pmid><doi>10.1101/gr.246934.118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3631-3979</orcidid><orcidid>https://orcid.org/0000-0002-6802-4514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2020-02, Vol.30 (2), p.185-194 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7050530 |
source | Freely Accessible Science Journals; PubMed Central |
subjects | Alleles Contamination Deoxyribonucleic acid DNA DNA - genetics DNA Contamination Exome - genetics Gene frequency Gene Frequency - genetics Genetic testing Genetics, Population Genomes Genotype Genotypes Genotyping Genotyping Techniques - standards Humans Method Methods Nucleotide sequence Polymorphism, Single Nucleotide - genetics Population genetics Population studies Sequence analysis Sequence Analysis, DNA |
title | Ancestry-agnostic estimation of DNA sample contamination from sequence reads |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ancestry-agnostic%20estimation%20of%20DNA%20sample%20contamination%20from%20sequence%20reads&rft.jtitle=Genome%20research&rft.au=Zhang,%20Fan&rft.aucorp=InPSYght%20Psychiatric%20Genetics%20Consortium&rft.date=2020-02-01&rft.volume=30&rft.issue=2&rft.spage=185&rft.epage=194&rft.pages=185-194&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.246934.118&rft_dat=%3Cproquest_pubme%3E2379603306%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-f113a8b03a715c098b6bf865f90d6f375390742196def8e9611acfe65ade57eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2379603306&rft_id=info:pmid/31980570&rfr_iscdi=true |