Loading…
Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages
This experiment employed an individual differences approach to test the hypothesis that learning modern programming languages resembles second “natural” language learning in adulthood. Behavioral and neural (resting-state EEG) indices of language aptitude were used along with numeracy and fluid cogn...
Saved in:
Published in: | Scientific reports 2020-03, Vol.10 (1), p.3817-3817, Article 3817 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-30cb3a28dc5949cf0eb6f2e167195537a3c8f0e2134d12e0b0b1fff39f077da53 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-30cb3a28dc5949cf0eb6f2e167195537a3c8f0e2134d12e0b0b1fff39f077da53 |
container_end_page | 3817 |
container_issue | 1 |
container_start_page | 3817 |
container_title | Scientific reports |
container_volume | 10 |
creator | Prat, Chantel S. Madhyastha, Tara M. Mottarella, Malayka J. Kuo, Chu-Hsuan |
description | This experiment employed an individual differences approach to test the hypothesis that learning modern programming languages resembles second “natural” language learning in adulthood. Behavioral and neural (resting-state EEG) indices of language aptitude were used along with numeracy and fluid cognitive measures (e.g., fluid reasoning, working memory, inhibitory control) as predictors. Rate of learning, programming accuracy, and post-test declarative knowledge were used as outcome measures in 36 individuals who participated in ten 45-minute Python training sessions. The resulting models explained 50–72% of the variance in learning outcomes, with language aptitude measures explaining significant variance in each outcome even when the other factors competed for variance. Across outcome variables, fluid reasoning and working-memory capacity explained 34% of the variance, followed by language aptitude (17%), resting-state EEG power in beta and low-gamma bands (10%), and numeracy (2%). These results provide a novel framework for understanding programming aptitude, suggesting that the importance of numeracy may be overestimated in modern programming education environments. |
doi_str_mv | 10.1038/s41598-020-60661-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7051953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369856381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-30cb3a28dc5949cf0eb6f2e167195537a3c8f0e2134d12e0b0b1fff39f077da53</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoKjp_wIUU3Lip5tG0zUYQ3zCoiG4NaXpTI206Jq3gvzfjjM-F2eSS891zczkI7RB8QDArD0NGuChTTHGa4zwnabmCNinOeEoZpas_6g00CeEZx8OpyIhYRxuMkqjgfBM93kGrBuua5FoNo1dtMlWuGVUDyfFssMNYQzL0yZWr7autx6ifWmPAg9MQEuuSKSjv5v23vm-86rp5_ekRttGaUW2AyfLeQg_nZ_cnl-n05uLq5Hiaak6LIWVYV0zRstZcZEIbDFVuKJC8IIJzViimy_hICctqQgFXuCLGGCYMLopacbaFjha-s7HqoNbghriLnHnbKf8me2Xlb8XZJ9n0r7LAPI5g0WB_aeD7lxHCIDsbNLStctCPQVJW4ExQkpUR3fuDPvejd3G9SOWi5DkrSaTogtK-D8GD-foMwXKeoFwkKGOC8iNBObfe_bnGV8tnXhFgCyBEyTXgv2f_Y_sOF3enag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369856381</pqid></control><display><type>article</type><title>Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Prat, Chantel S. ; Madhyastha, Tara M. ; Mottarella, Malayka J. ; Kuo, Chu-Hsuan</creator><creatorcontrib>Prat, Chantel S. ; Madhyastha, Tara M. ; Mottarella, Malayka J. ; Kuo, Chu-Hsuan</creatorcontrib><description>This experiment employed an individual differences approach to test the hypothesis that learning modern programming languages resembles second “natural” language learning in adulthood. Behavioral and neural (resting-state EEG) indices of language aptitude were used along with numeracy and fluid cognitive measures (e.g., fluid reasoning, working memory, inhibitory control) as predictors. Rate of learning, programming accuracy, and post-test declarative knowledge were used as outcome measures in 36 individuals who participated in ten 45-minute Python training sessions. The resulting models explained 50–72% of the variance in learning outcomes, with language aptitude measures explaining significant variance in each outcome even when the other factors competed for variance. Across outcome variables, fluid reasoning and working-memory capacity explained 34% of the variance, followed by language aptitude (17%), resting-state EEG power in beta and low-gamma bands (10%), and numeracy (2%). These results provide a novel framework for understanding programming aptitude, suggesting that the importance of numeracy may be overestimated in modern programming education environments.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-60661-8</identifier><identifier>PMID: 32123206</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1595/1636 ; 631/378/2649/1594 ; 631/477/2811 ; Adolescent ; Adult ; Aptitude - physiology ; Cognitive ability ; EEG ; Electroencephalography ; Female ; Humanities and Social Sciences ; Humans ; Individuality ; Learning ; Learning - physiology ; Male ; Memory ; multidisciplinary ; Programming Languages ; Science ; Science (multidisciplinary) ; Short term memory ; Young Adult</subject><ispartof>Scientific reports, 2020-03, Vol.10 (1), p.3817-3817, Article 3817</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-30cb3a28dc5949cf0eb6f2e167195537a3c8f0e2134d12e0b0b1fff39f077da53</citedby><cites>FETCH-LOGICAL-c527t-30cb3a28dc5949cf0eb6f2e167195537a3c8f0e2134d12e0b0b1fff39f077da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2369856381/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2369856381?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32123206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prat, Chantel S.</creatorcontrib><creatorcontrib>Madhyastha, Tara M.</creatorcontrib><creatorcontrib>Mottarella, Malayka J.</creatorcontrib><creatorcontrib>Kuo, Chu-Hsuan</creatorcontrib><title>Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This experiment employed an individual differences approach to test the hypothesis that learning modern programming languages resembles second “natural” language learning in adulthood. Behavioral and neural (resting-state EEG) indices of language aptitude were used along with numeracy and fluid cognitive measures (e.g., fluid reasoning, working memory, inhibitory control) as predictors. Rate of learning, programming accuracy, and post-test declarative knowledge were used as outcome measures in 36 individuals who participated in ten 45-minute Python training sessions. The resulting models explained 50–72% of the variance in learning outcomes, with language aptitude measures explaining significant variance in each outcome even when the other factors competed for variance. Across outcome variables, fluid reasoning and working-memory capacity explained 34% of the variance, followed by language aptitude (17%), resting-state EEG power in beta and low-gamma bands (10%), and numeracy (2%). These results provide a novel framework for understanding programming aptitude, suggesting that the importance of numeracy may be overestimated in modern programming education environments.</description><subject>631/378/1595/1636</subject><subject>631/378/2649/1594</subject><subject>631/477/2811</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aptitude - physiology</subject><subject>Cognitive ability</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Individuality</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Memory</subject><subject>multidisciplinary</subject><subject>Programming Languages</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Short term memory</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kUtLxDAUhYMoKjp_wIUU3Lip5tG0zUYQ3zCoiG4NaXpTI206Jq3gvzfjjM-F2eSS891zczkI7RB8QDArD0NGuChTTHGa4zwnabmCNinOeEoZpas_6g00CeEZx8OpyIhYRxuMkqjgfBM93kGrBuua5FoNo1dtMlWuGVUDyfFssMNYQzL0yZWr7autx6ifWmPAg9MQEuuSKSjv5v23vm-86rp5_ekRttGaUW2AyfLeQg_nZ_cnl-n05uLq5Hiaak6LIWVYV0zRstZcZEIbDFVuKJC8IIJzViimy_hICctqQgFXuCLGGCYMLopacbaFjha-s7HqoNbghriLnHnbKf8me2Xlb8XZJ9n0r7LAPI5g0WB_aeD7lxHCIDsbNLStctCPQVJW4ExQkpUR3fuDPvejd3G9SOWi5DkrSaTogtK-D8GD-foMwXKeoFwkKGOC8iNBObfe_bnGV8tnXhFgCyBEyTXgv2f_Y_sOF3enag</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Prat, Chantel S.</creator><creator>Madhyastha, Tara M.</creator><creator>Mottarella, Malayka J.</creator><creator>Kuo, Chu-Hsuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200302</creationdate><title>Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages</title><author>Prat, Chantel S. ; Madhyastha, Tara M. ; Mottarella, Malayka J. ; Kuo, Chu-Hsuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-30cb3a28dc5949cf0eb6f2e167195537a3c8f0e2134d12e0b0b1fff39f077da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/1595/1636</topic><topic>631/378/2649/1594</topic><topic>631/477/2811</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aptitude - physiology</topic><topic>Cognitive ability</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Individuality</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Memory</topic><topic>multidisciplinary</topic><topic>Programming Languages</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Short term memory</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prat, Chantel S.</creatorcontrib><creatorcontrib>Madhyastha, Tara M.</creatorcontrib><creatorcontrib>Mottarella, Malayka J.</creatorcontrib><creatorcontrib>Kuo, Chu-Hsuan</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prat, Chantel S.</au><au>Madhyastha, Tara M.</au><au>Mottarella, Malayka J.</au><au>Kuo, Chu-Hsuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3817</spage><epage>3817</epage><pages>3817-3817</pages><artnum>3817</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This experiment employed an individual differences approach to test the hypothesis that learning modern programming languages resembles second “natural” language learning in adulthood. Behavioral and neural (resting-state EEG) indices of language aptitude were used along with numeracy and fluid cognitive measures (e.g., fluid reasoning, working memory, inhibitory control) as predictors. Rate of learning, programming accuracy, and post-test declarative knowledge were used as outcome measures in 36 individuals who participated in ten 45-minute Python training sessions. The resulting models explained 50–72% of the variance in learning outcomes, with language aptitude measures explaining significant variance in each outcome even when the other factors competed for variance. Across outcome variables, fluid reasoning and working-memory capacity explained 34% of the variance, followed by language aptitude (17%), resting-state EEG power in beta and low-gamma bands (10%), and numeracy (2%). These results provide a novel framework for understanding programming aptitude, suggesting that the importance of numeracy may be overestimated in modern programming education environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32123206</pmid><doi>10.1038/s41598-020-60661-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-03, Vol.10 (1), p.3817-3817, Article 3817 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7051953 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/1595/1636 631/378/2649/1594 631/477/2811 Adolescent Adult Aptitude - physiology Cognitive ability EEG Electroencephalography Female Humanities and Social Sciences Humans Individuality Learning Learning - physiology Male Memory multidisciplinary Programming Languages Science Science (multidisciplinary) Short term memory Young Adult |
title | Relating Natural Language Aptitude to Individual Differences in Learning Programming Languages |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20Natural%20Language%20Aptitude%20to%20Individual%20Differences%20in%20Learning%20Programming%20Languages&rft.jtitle=Scientific%20reports&rft.au=Prat,%20Chantel%20S.&rft.date=2020-03-02&rft.volume=10&rft.issue=1&rft.spage=3817&rft.epage=3817&rft.pages=3817-3817&rft.artnum=3817&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-60661-8&rft_dat=%3Cproquest_pubme%3E2369856381%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-30cb3a28dc5949cf0eb6f2e167195537a3c8f0e2134d12e0b0b1fff39f077da53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369856381&rft_id=info:pmid/32123206&rfr_iscdi=true |