Loading…
Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging
Schwann cell (SC)‐specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1 f/f mice with myelin protein zero (P0)‐Cre mice. P0‐Cre+/−, MCT1 f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory...
Saved in:
Published in: | Glia 2020-01, Vol.68 (1), p.161-177 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5140-59a5da43c82d1b92e3f2008cbd5be9d463f3ad8232ad362223072558ef8d9b943 |
---|---|
cites | cdi_FETCH-LOGICAL-c5140-59a5da43c82d1b92e3f2008cbd5be9d463f3ad8232ad362223072558ef8d9b943 |
container_end_page | 177 |
container_issue | 1 |
container_start_page | 161 |
container_title | Glia |
container_volume | 68 |
creator | Jha, Mithilesh Kumar Lee, Youngjin Russell, Katelyn A. Yang, Fang Dastgheyb, Raha M. Deme, Pragney Ament, Xanthe H. Chen, Weiran Liu, Ying Guan, Yun Polydefkis, Michael J. Hoke, Ahmet Haughey, Norman J. Rothstein, Jeffrey D. Morrison, Brett M. |
description | Schwann cell (SC)‐specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1
f/f mice with myelin protein zero (P0)‐Cre mice. P0‐Cre+/−, MCT1
f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory, but not motor, peripheral nerves during maturation and aging. Furthermore, reduced mechanical sensitivity is evident in aged P0‐Cre+/−, MCT1
f/f mice. MCT1 deletion in SCs impairs both their glycolytic and mitochondrial functions, leading to altered lipid metabolism of triacylglycerides, diacylglycerides, and sphingomyelin, decreased expression of myelin‐associated glycoprotein, and increased expression of c‐Jun and p75‐neurotrophin receptor, suggesting a regression of SCs to a less mature developmental state. Taken together, our results define the contribution of SC MCT1 to both SC metabolism and peripheral nerve maturation and aging.
Main Points
SC MCT1 deficiency causes hypomyelination of sensory, but not motor, axons during aging.
Selective ablation of MCT1 within SCs impairs glycolytic and mitochondrial functions.
SC‐specific MCT1 deficiency impairs proteins that regulate myelin and lipid metabolism in peripheral nerves |
doi_str_mv | 10.1002/glia.23710 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7054847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281115486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5140-59a5da43c82d1b92e3f2008cbd5be9d463f3ad8232ad362223072558ef8d9b943</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoNY7LW68QdIwE0RpuYkmY9shFK0LdzShboOmcyZ25SZ5JrMtM6_N7e3FuvCTQ7hPDy8yUvIO2AnwBj_tBmcOeGiBvaCrICppgAQ1UuyYo2SBUgFh-R1SreMQb7Ur8ihAFmKSqoVSVfBB2tiG34tg5mQTtH4tA1xwkiBOk-_2Zt74z21OAyJ2uCn6Np5wkSnQEfj_ITeeIs09DShTyEu1GO8QzouODhvJhc87ebo_IaaTT7fkIPeDAnfPs4j8uPrl-9nF8X6-vzy7HRd2BIkK0plys5IYRveQas4ip4z1ti2K1tUnaxEL0zXcMFNJyrOuWA1L8sG-6ZTrZLiiHzee7dzO2JnMUc3g95GN5q46GCcfr7x7kZvwp2uWSkbWWfB8aMghp8zpkmPLu3-wXgMc9KcNwCQ2SqjH_5Bb8McfX6e5gKEyqAQmfq4p2wMKUXsn8IA07su9a5L_dBlht__Hf8J_VNeBmAP3LsBl_-o9Pn68nQv_Q2pvawR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313981133</pqid></control><display><type>article</type><title>Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Jha, Mithilesh Kumar ; Lee, Youngjin ; Russell, Katelyn A. ; Yang, Fang ; Dastgheyb, Raha M. ; Deme, Pragney ; Ament, Xanthe H. ; Chen, Weiran ; Liu, Ying ; Guan, Yun ; Polydefkis, Michael J. ; Hoke, Ahmet ; Haughey, Norman J. ; Rothstein, Jeffrey D. ; Morrison, Brett M.</creator><creatorcontrib>Jha, Mithilesh Kumar ; Lee, Youngjin ; Russell, Katelyn A. ; Yang, Fang ; Dastgheyb, Raha M. ; Deme, Pragney ; Ament, Xanthe H. ; Chen, Weiran ; Liu, Ying ; Guan, Yun ; Polydefkis, Michael J. ; Hoke, Ahmet ; Haughey, Norman J. ; Rothstein, Jeffrey D. ; Morrison, Brett M.</creatorcontrib><description>Schwann cell (SC)‐specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1
f/f mice with myelin protein zero (P0)‐Cre mice. P0‐Cre+/−, MCT1
f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory, but not motor, peripheral nerves during maturation and aging. Furthermore, reduced mechanical sensitivity is evident in aged P0‐Cre+/−, MCT1
f/f mice. MCT1 deletion in SCs impairs both their glycolytic and mitochondrial functions, leading to altered lipid metabolism of triacylglycerides, diacylglycerides, and sphingomyelin, decreased expression of myelin‐associated glycoprotein, and increased expression of c‐Jun and p75‐neurotrophin receptor, suggesting a regression of SCs to a less mature developmental state. Taken together, our results define the contribution of SC MCT1 to both SC metabolism and peripheral nerve maturation and aging.
Main Points
SC MCT1 deficiency causes hypomyelination of sensory, but not motor, axons during aging.
Selective ablation of MCT1 within SCs impairs glycolytic and mitochondrial functions.
SC‐specific MCT1 deficiency impairs proteins that regulate myelin and lipid metabolism in peripheral nerves</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23710</identifier><identifier>PMID: 31453649</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aging ; Aging - genetics ; Aging - metabolism ; Animals ; Cells, Cultured ; Clonal deletion ; Female ; Glycolysis ; Glycoproteins ; lactate ; Lipid metabolism ; Lipids ; Maintenance ; Male ; Maturation ; MCT1 ; Metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mitochondria ; monocarboxylate transporter ; Monocarboxylic Acid Transporters - deficiency ; Monocarboxylic Acid Transporters - genetics ; Monocarboxylic Acid Transporters - metabolism ; Myelin ; Myelin P0 protein ; Myelin Sheath - genetics ; Myelin Sheath - metabolism ; Myelination ; Neural Conduction - physiology ; peripheral nerve ; Peripheral nerves ; Schwann cell ; Schwann cells ; Schwann Cells - metabolism ; sensory axons ; Sensory neurons ; Sensory Receptor Cells - metabolism ; Sphingomyelin ; Sural Nerve - metabolism ; Symporters - deficiency ; Symporters - genetics ; Symporters - metabolism ; triacylglycerides ; Triglycerides</subject><ispartof>Glia, 2020-01, Vol.68 (1), p.161-177</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5140-59a5da43c82d1b92e3f2008cbd5be9d463f3ad8232ad362223072558ef8d9b943</citedby><cites>FETCH-LOGICAL-c5140-59a5da43c82d1b92e3f2008cbd5be9d463f3ad8232ad362223072558ef8d9b943</cites><orcidid>0000-0001-5194-4122 ; 0000-0002-9526-0053 ; 0000-0003-2001-8470 ; 0000-0001-5404-3899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31453649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jha, Mithilesh Kumar</creatorcontrib><creatorcontrib>Lee, Youngjin</creatorcontrib><creatorcontrib>Russell, Katelyn A.</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Dastgheyb, Raha M.</creatorcontrib><creatorcontrib>Deme, Pragney</creatorcontrib><creatorcontrib>Ament, Xanthe H.</creatorcontrib><creatorcontrib>Chen, Weiran</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Guan, Yun</creatorcontrib><creatorcontrib>Polydefkis, Michael J.</creatorcontrib><creatorcontrib>Hoke, Ahmet</creatorcontrib><creatorcontrib>Haughey, Norman J.</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D.</creatorcontrib><creatorcontrib>Morrison, Brett M.</creatorcontrib><title>Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging</title><title>Glia</title><addtitle>Glia</addtitle><description>Schwann cell (SC)‐specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1
f/f mice with myelin protein zero (P0)‐Cre mice. P0‐Cre+/−, MCT1
f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory, but not motor, peripheral nerves during maturation and aging. Furthermore, reduced mechanical sensitivity is evident in aged P0‐Cre+/−, MCT1
f/f mice. MCT1 deletion in SCs impairs both their glycolytic and mitochondrial functions, leading to altered lipid metabolism of triacylglycerides, diacylglycerides, and sphingomyelin, decreased expression of myelin‐associated glycoprotein, and increased expression of c‐Jun and p75‐neurotrophin receptor, suggesting a regression of SCs to a less mature developmental state. Taken together, our results define the contribution of SC MCT1 to both SC metabolism and peripheral nerve maturation and aging.
Main Points
SC MCT1 deficiency causes hypomyelination of sensory, but not motor, axons during aging.
Selective ablation of MCT1 within SCs impairs glycolytic and mitochondrial functions.
SC‐specific MCT1 deficiency impairs proteins that regulate myelin and lipid metabolism in peripheral nerves</description><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Clonal deletion</subject><subject>Female</subject><subject>Glycolysis</subject><subject>Glycoproteins</subject><subject>lactate</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Maintenance</subject><subject>Male</subject><subject>Maturation</subject><subject>MCT1</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>monocarboxylate transporter</subject><subject>Monocarboxylic Acid Transporters - deficiency</subject><subject>Monocarboxylic Acid Transporters - genetics</subject><subject>Monocarboxylic Acid Transporters - metabolism</subject><subject>Myelin</subject><subject>Myelin P0 protein</subject><subject>Myelin Sheath - genetics</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Neural Conduction - physiology</subject><subject>peripheral nerve</subject><subject>Peripheral nerves</subject><subject>Schwann cell</subject><subject>Schwann cells</subject><subject>Schwann Cells - metabolism</subject><subject>sensory axons</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Sphingomyelin</subject><subject>Sural Nerve - metabolism</subject><subject>Symporters - deficiency</subject><subject>Symporters - genetics</subject><subject>Symporters - metabolism</subject><subject>triacylglycerides</subject><subject>Triglycerides</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoNY7LW68QdIwE0RpuYkmY9shFK0LdzShboOmcyZ25SZ5JrMtM6_N7e3FuvCTQ7hPDy8yUvIO2AnwBj_tBmcOeGiBvaCrICppgAQ1UuyYo2SBUgFh-R1SreMQb7Ur8ihAFmKSqoVSVfBB2tiG34tg5mQTtH4tA1xwkiBOk-_2Zt74z21OAyJ2uCn6Np5wkSnQEfj_ITeeIs09DShTyEu1GO8QzouODhvJhc87ebo_IaaTT7fkIPeDAnfPs4j8uPrl-9nF8X6-vzy7HRd2BIkK0plys5IYRveQas4ip4z1ti2K1tUnaxEL0zXcMFNJyrOuWA1L8sG-6ZTrZLiiHzee7dzO2JnMUc3g95GN5q46GCcfr7x7kZvwp2uWSkbWWfB8aMghp8zpkmPLu3-wXgMc9KcNwCQ2SqjH_5Bb8McfX6e5gKEyqAQmfq4p2wMKUXsn8IA07su9a5L_dBlht__Hf8J_VNeBmAP3LsBl_-o9Pn68nQv_Q2pvawR</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Jha, Mithilesh Kumar</creator><creator>Lee, Youngjin</creator><creator>Russell, Katelyn A.</creator><creator>Yang, Fang</creator><creator>Dastgheyb, Raha M.</creator><creator>Deme, Pragney</creator><creator>Ament, Xanthe H.</creator><creator>Chen, Weiran</creator><creator>Liu, Ying</creator><creator>Guan, Yun</creator><creator>Polydefkis, Michael J.</creator><creator>Hoke, Ahmet</creator><creator>Haughey, Norman J.</creator><creator>Rothstein, Jeffrey D.</creator><creator>Morrison, Brett M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5194-4122</orcidid><orcidid>https://orcid.org/0000-0002-9526-0053</orcidid><orcidid>https://orcid.org/0000-0003-2001-8470</orcidid><orcidid>https://orcid.org/0000-0001-5404-3899</orcidid></search><sort><creationdate>202001</creationdate><title>Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging</title><author>Jha, Mithilesh Kumar ; Lee, Youngjin ; Russell, Katelyn A. ; Yang, Fang ; Dastgheyb, Raha M. ; Deme, Pragney ; Ament, Xanthe H. ; Chen, Weiran ; Liu, Ying ; Guan, Yun ; Polydefkis, Michael J. ; Hoke, Ahmet ; Haughey, Norman J. ; Rothstein, Jeffrey D. ; Morrison, Brett M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5140-59a5da43c82d1b92e3f2008cbd5be9d463f3ad8232ad362223072558ef8d9b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Clonal deletion</topic><topic>Female</topic><topic>Glycolysis</topic><topic>Glycoproteins</topic><topic>lactate</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Maintenance</topic><topic>Male</topic><topic>Maturation</topic><topic>MCT1</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>monocarboxylate transporter</topic><topic>Monocarboxylic Acid Transporters - deficiency</topic><topic>Monocarboxylic Acid Transporters - genetics</topic><topic>Monocarboxylic Acid Transporters - metabolism</topic><topic>Myelin</topic><topic>Myelin P0 protein</topic><topic>Myelin Sheath - genetics</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Neural Conduction - physiology</topic><topic>peripheral nerve</topic><topic>Peripheral nerves</topic><topic>Schwann cell</topic><topic>Schwann cells</topic><topic>Schwann Cells - metabolism</topic><topic>sensory axons</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Sphingomyelin</topic><topic>Sural Nerve - metabolism</topic><topic>Symporters - deficiency</topic><topic>Symporters - genetics</topic><topic>Symporters - metabolism</topic><topic>triacylglycerides</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Mithilesh Kumar</creatorcontrib><creatorcontrib>Lee, Youngjin</creatorcontrib><creatorcontrib>Russell, Katelyn A.</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Dastgheyb, Raha M.</creatorcontrib><creatorcontrib>Deme, Pragney</creatorcontrib><creatorcontrib>Ament, Xanthe H.</creatorcontrib><creatorcontrib>Chen, Weiran</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Guan, Yun</creatorcontrib><creatorcontrib>Polydefkis, Michael J.</creatorcontrib><creatorcontrib>Hoke, Ahmet</creatorcontrib><creatorcontrib>Haughey, Norman J.</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D.</creatorcontrib><creatorcontrib>Morrison, Brett M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Mithilesh Kumar</au><au>Lee, Youngjin</au><au>Russell, Katelyn A.</au><au>Yang, Fang</au><au>Dastgheyb, Raha M.</au><au>Deme, Pragney</au><au>Ament, Xanthe H.</au><au>Chen, Weiran</au><au>Liu, Ying</au><au>Guan, Yun</au><au>Polydefkis, Michael J.</au><au>Hoke, Ahmet</au><au>Haughey, Norman J.</au><au>Rothstein, Jeffrey D.</au><au>Morrison, Brett M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2020-01</date><risdate>2020</risdate><volume>68</volume><issue>1</issue><spage>161</spage><epage>177</epage><pages>161-177</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Schwann cell (SC)‐specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1
f/f mice with myelin protein zero (P0)‐Cre mice. P0‐Cre+/−, MCT1
f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory, but not motor, peripheral nerves during maturation and aging. Furthermore, reduced mechanical sensitivity is evident in aged P0‐Cre+/−, MCT1
f/f mice. MCT1 deletion in SCs impairs both their glycolytic and mitochondrial functions, leading to altered lipid metabolism of triacylglycerides, diacylglycerides, and sphingomyelin, decreased expression of myelin‐associated glycoprotein, and increased expression of c‐Jun and p75‐neurotrophin receptor, suggesting a regression of SCs to a less mature developmental state. Taken together, our results define the contribution of SC MCT1 to both SC metabolism and peripheral nerve maturation and aging.
Main Points
SC MCT1 deficiency causes hypomyelination of sensory, but not motor, axons during aging.
Selective ablation of MCT1 within SCs impairs glycolytic and mitochondrial functions.
SC‐specific MCT1 deficiency impairs proteins that regulate myelin and lipid metabolism in peripheral nerves</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31453649</pmid><doi>10.1002/glia.23710</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5194-4122</orcidid><orcidid>https://orcid.org/0000-0002-9526-0053</orcidid><orcidid>https://orcid.org/0000-0003-2001-8470</orcidid><orcidid>https://orcid.org/0000-0001-5404-3899</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2020-01, Vol.68 (1), p.161-177 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7054847 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Aging Aging - genetics Aging - metabolism Animals Cells, Cultured Clonal deletion Female Glycolysis Glycoproteins lactate Lipid metabolism Lipids Maintenance Male Maturation MCT1 Metabolism Mice Mice, Knockout Mice, Transgenic Mitochondria monocarboxylate transporter Monocarboxylic Acid Transporters - deficiency Monocarboxylic Acid Transporters - genetics Monocarboxylic Acid Transporters - metabolism Myelin Myelin P0 protein Myelin Sheath - genetics Myelin Sheath - metabolism Myelination Neural Conduction - physiology peripheral nerve Peripheral nerves Schwann cell Schwann cells Schwann Cells - metabolism sensory axons Sensory neurons Sensory Receptor Cells - metabolism Sphingomyelin Sural Nerve - metabolism Symporters - deficiency Symporters - genetics Symporters - metabolism triacylglycerides Triglycerides |
title | Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monocarboxylate%20transporter%201%20in%20Schwann%20cells%20contributes%20to%20maintenance%20of%20sensory%20nerve%20myelination%20during%20aging&rft.jtitle=Glia&rft.au=Jha,%20Mithilesh%20Kumar&rft.date=2020-01&rft.volume=68&rft.issue=1&rft.spage=161&rft.epage=177&rft.pages=161-177&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.23710&rft_dat=%3Cproquest_pubme%3E2281115486%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5140-59a5da43c82d1b92e3f2008cbd5be9d463f3ad8232ad362223072558ef8d9b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313981133&rft_id=info:pmid/31453649&rfr_iscdi=true |